K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

a) x+2x+...+50x =2550

x. [ 1+2+3+....+50]=2550

ta co :

so so hang cua day 1;2;3;4;...;50:

     [50-1]:1+1=50

tong cua day tren la :

    [50+1].50:2=1275

=> x.1275=2550

x=2550:1275

vay x=2

8 tháng 12 2018

Cảm ơn bạn!

15 tháng 3 2020

a) 3x-2/3 - 2 = 4x+1/4

<=>3x-8/3=4x+1/4

<=>3x-8/3-4x-1/4=0

<=>-x-29/12=0

<=>-x=29/12

<=>x=-29/12

Vậy x=-29/12

b) x-3/4 + 2x-1/3 = 2-x/6

<=>3x-13/12=2-x/6

<=>3x-13/12-2+x.1/6=0

<=> 19/6x-37/12=0

<=>19/6x=37/12

<=>x=37/38

Vậy x=37/38

19 tháng 8 2020

a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )

<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84

<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192

<=> -80x = -588

<=> x = -588/-80 = 147/20

b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6

<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6

<=> x2 + 5x + 6 - x2 - 3x + 10 = 6

<=> 2x + 16 = 6

<=> 2x = -10

<=> x = -5

c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x

<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x

<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2

<=> -5x2 - 2x = -3

<=> -5x2 - 2x + 3 = 0

<=> -( 5x2 + 2x - 3 ) = 0

<=> -( 5x2 + 5x - 3x - 3 ) = 0

<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0

<=> -( x + 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)

d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3 

<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3

<=> 4x2 - 6x = 11

<=> 4x2 - 6x - 11 = 0

=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))

19 tháng 8 2020

vẫn làm được nha quỳnh !

\(4x^2-6x-11=0\)

\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)

\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)

\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)

25 tháng 7 2018

Bài 2:

\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)

\(=25x^2+10x+1-\left(2xy-3\right)^2\)

\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)

\(=25x^2+10x+1-4x^2y^2+12xy-9\)

\(=25x^2-4x^2y^2+10x+12xy-8\)

Bài 2: 

\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)

\(=x^3-1=x^3-9x^2+2x+6\)

\(=x^3-9x^2+2x+6=x^3-1\)

\(=x^3-9x^2+2x+6+1=x^3-1+1\)

\(=x^3-9x^2+2x+7=x^3\)

\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)

\(=-9x^2+2x+7=0\)

\(\Rightarrow x=-\frac{7}{9};x=1\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

a. $9x^2-16-(3x-4)(2x+5)=0$

$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$

$\Leftrightarrow (3x-4)(x-1)=0$

$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.

b.

$x^2+4x=12$

$\Leftrightarrow x^2+4x-12=0$

$\Leftrightarrow (x^2-2x)+(6x-12)=0$

$\Leftrightarrow x(x-2)+6(x-2)=0$

$\Leftrightarrow (x-2)(x+6)=0$

$\Leftrightarrow x-2=0$ hoặc $x+6=0$

$\Leftrightarrow x=2$ hoặc $x=-6$

c.

$x^2-2x=35$

$\Leftrightarrow x^2-2x-35=0$

$\Leftrightarrow (x^2+5x)-(7x+35)=0$

$\Leftrightarrow x(x+5)-7(x+5)=0$

$\Leftrightarrow (x+5)(x-7)=0$

$\Leftrightarrow x+5=0$ hoặc $x-7=0$

$\Leftrightarrow x=-5$ hoặc $x=7$

25 tháng 11 2023

cảm ơn bạn nhìu nha vui

23 tháng 3 2020

ngu tự nghĩ đi

23 tháng 3 2020

cái này tớ chưa làm nhưng hãy k cho tớ nhé

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

19 tháng 8 2020

c. - x ( x + 3 ) + 2 = ( 4x + 1 ) ( x - 1 ) + 2x

<=> - x2 - 3x + 2 = 4x2 - x - 1

<=> 4x2 - x - 1 + x2 + 3x - 2 = 0

<=> 5x2 + 2x - 3 = 0

<=> ( 5x2 + 5x ) - ( 3x + 3 ) = 0

<=> 5x ( x + 1 ) - 3 ( x + 1 ) = 0

<=> ( 5x - 3 ) ( x + 1 ) = 0 

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-1\end{cases}}\)

d. ( 2x + 3 ) ( x - 3 ) - ( x - 3 ) ( x + 1 ) = ( 2 - x ) ( 3x + 1 ) + 3

<=> ( x - 3 ) ( 2x + 3 - x - 1 ) = - 3x2 + 5x + 5

<=> x2 - x - 6 = - 3x2 + 5x + 5

<=>  - 3x2 + 5x + 5 - x2 + x + 6 = 0

<=> - 4x2 + 6x + 11 = 0

\(\Leftrightarrow x=\frac{6\pm\sqrt{\left(-6\right)^2-4\left(4.\left(-11\right)\right)}}{2.4}\)( xài công thức bậc 2 )

\(\Leftrightarrow x=\frac{6\pm2\sqrt{53}}{8}\Leftrightarrow x=\frac{3\pm\sqrt{53}}{4}\)

Vậy \(x=\frac{3+\sqrt{53}}{4};x=\frac{3-\sqrt{53}}{4}\)