Chứng minh rằng (12n +1,30n+1)=1.(với mọi n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC(12n+1,30n+1) (d thuộc N*)
=> 12n+1 chia hết cho d;30n+1 chai hết cho d
=>5(12n+1) chia hết cho d;2(30n+1) chia hết cho d
60n+5 chai hết cho d;60n+2 chia hết cho d
=>(60n+5)-(60n+2) chia hết cho d
60n+5-60n-2 chia hết cho d
(60n-60n)+(5-2) chia hết cho d
3 chia hết cho d
=> d thuộc {1;3}
Hay ƯC(12n+1;30n+1) thuộc {1;3}
Mà 12n+1 và 30n+1 không chia hết cho 3 vì:
12n và 30n chia hết cho 3
Mà 1 không chia hết cho 3 nên 12n+1 và 30n+1 không chia hết cho 3
Do đó ƯC(12n+1;30n+1) thuộc {1}
=> ƯCLN(12n+1;30n+1) = 1
Vậy ƯCLN(12n+1;30n+1) = 1 (với n thuộc N)
Giả sử cả 12n+1 và 30n+2 đều chia hết cho d
=> 12n+1 chia hết cho d và 30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
=> 60n+5 chia hết cho d và 60n+4 chia hết cho d
=> 60n+5-60n-4 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N
Muốn chứng minh hai số là nguyên tố cùng nhau thì ta chứng minh ước chung lớn nhất của chúng bằng 1.
Thật vậy, Giả sử d là ước chung của 3n + 2 và 12n + 5 .
=> d là ước của 3n + 2 => d là ước của (3n+2).4 = 12n + 8
=> d là ước của (12n + 8) - (12n + 5) = 3 => d là ước của 3n
=> d là ước của (3n + 2) - 3n = 2
Vì d vừa là ước của 3 và 2 nên d = 1.
Đề thiếu rồi phải là $30n+2$
Gọi $ƯCLN(12n+1,30n+2)=d(d>0)(d \in N)$
$\to \begin{cases}12n+1 \vdots d\\30n+2 \vdots d\\\end{cases}$
$\to \begin{cases}60n+5 \vdots d\\60n+4 \vdots d\\\end{cases}$
$\to 60n+5-60n-4 \vdots d$
$\to 1 \vdots d$
$\to d=1$
Vậy ƯCLN(12n+1,30n+2)
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Bài toán khá hay, giải bài này như sau:
Giả sử \(\left(12n+1,30n+1\right)=d\left(d\inℕ\right)\)
Ta có:
\(5\left(12n+1\right)=60n+5⋮d\) (1)
\(2\left(30n+1\right)=60n+2⋮d\) (2)
Lấy (1) trừ (2);
\(60n+5-\left(60n+2\right)=3⋮d\)
Do 12n+1 và 30n+1 không chia hết cho 3 nên d=1.
Vậy \(\left(12n+1,30n+1\right)=1\)