K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BAE=góc BCD=góc ABC=góc AED=góc CDE=108 độ

góc BAC=góc BCA=(180-108)/2=36 độ

=>góc CAE=góc ACD=72 độ

Vì góc CAE+góc AED=180 độ

nên AC//ED

mà góc AED=góc CDE

nên ACDE là hình thang cân

b: góc ABE=góc AEB=(180-108)/2=36 độ

góc AKE=180 độ-72 độ-36 độ=72 độ=góc ACD

=>KE//DC

Xet tứ giác KCDE có

KC//DE

KE//CD

KC=CD
DO đó: KCDE là hình thoi

31 tháng 10 2018

Số đo mỗi góc của ngũ giác đều là 1080.

Ta có tam giác ABC cân tại B

⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^     (1)

Chứng minh tương tự ta được:

C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0  

Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C       (2)

Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)

(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)

* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .

Vậy tứ giác CDEK là hình bình hành

mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)

3 tháng 9 2019

A B C D E 1 2 1 2 K

Giải:

Góc của ngũ giác đều là \(\frac{\left(5-2\right).180^0}{5}=108^0\)

Xét \(\Delta ABC\)cân tại B có \(\widehat{ABC}=108^0\Rightarrow\widehat{A_1}=\widehat{C_1}=\frac{180^0-108^0}{2}=36^0\)

Do đó: \(\widehat{A_2}=\widehat{C_2}=108^0-36^0=72^0\)

Ta có: \(\widehat{C_2}+\widehat{D}=72^0+108^0=180^0\)mà 2 góc này ở vị trí trong cùng phía nên AC // DE.

Chứng minh tương tự như trên, BE // CD. Do đó CKED là hình bình hành.

Mà CD=DE nên CKED là hình thoi.

Mình làm mệt quá, k mk nha!

30 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AE=CF

\(\widehat{EAB}=\widehat{FCD}\)

AB=CD

Do đó: ΔAEB=ΔCFD

Suy ra:BE=FD

Xét ΔADE và ΔCBF có 

AE=CF

\(\widehat{DAE}=\widehat{BCF}\)

AE=CF

Do đó: ΔADE=ΔCBF

Suy ra: DE=BF

Xét tứ giác BEDF có 

BE=DF

DE=BF

Do đó: BEDF là hình bình hành

30 tháng 10 2021

giải hộ em câu c vs ạ

cj kham khảo

a) Nối AC; AD

Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800

Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400

b) Vì ABCDE là ngũ giác đều nên

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)

Mặt khác ΔABC cân tại B nên 

\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)

\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)

\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt)

nên tứ giác CEFD là hình thoi.

27 tháng 12 2022

THAM KHẢO

a) BK//OC, CK//OB.

Mà OB ^OC Þ OBKC là hình chữ nhật.

b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.

Þ KO = BC Þ ĐPCM.

c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông

19 tháng 12 2018

C D B E A O P K M L Q S T R F N I x

a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)

Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD  (2)

Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).

b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"

Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ  = ^KML (Đối đỉnh)

Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)

Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)

Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)

Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)

Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).

c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)

Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.

Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF

Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM

Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)

Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD

Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID

Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)

Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)

Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI

Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)

Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.  

19 tháng 12 2018

Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(