K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

Thi đề phòng sớm sớm zậy :))) Thi xong gửi đề cho tui nhe 

Hình tự kẻ :

a.

Xét Tam giác CMI và tam giác AKI có:

AI=CI ( I là trung điểm của AC )

góc CIM = góc AIK ( đối đỉnh )

MI = IK ( K đối xứng M qua I )

=> Tam giác CMI = tam giác AKI ( cgc)

=> Góc CMI = Góc IKA ( 2 góc tương ứng )

=> Góc CMK = góc AKM ( slt ) 

=> AK // MC => AK //  BC

b) 

Tam giác ABC có:

M là trung điểm của BC (gt)

I là trung điểm của AC (gt)

=> MI là đường trung bình của tam giác ABC 

=>\(MI=\dfrac{1}{2}AB\); MI // AB ( tính chất đường trung bình )

Ta có :

K đối xứng với M qua I (gt)

=> I là trung điểm của KM => \(MI=IK=\dfrac{1}{2}MK\)

Ta lại có :

\(MI=IK=\dfrac{1}{2}MK\left(cmt\right)\Rightarrow MK=2MI\left(1\right)\)

\(MI=\dfrac{1}{2}AB\left(cmt\right)\Rightarrow AB=2MI\left(2\right)\)

Từ 1 và 2 ⇒ AB = MK 

Tứ giác ABMK có:

AB = MK (cmt)

MK // AB ( MI // AB )

=> tứ giác ABMK Là hình bình hành 

c)

Giả sử tứ giác AMCK là Hình Vuông => AM = MC = CK = AK ( tính chất hình vuông )

Tam giác ABC cân có:

AM là đường trung tuyến ( M là trung điểm của BC )

Mà : AM = MC ( cmt )

\(\Rightarrow AM=MC=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

Vậy .....

 

26 tháng 1 2022

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.

14 tháng 11 2021

 mn ơi giupsmik với nhanh nhanh 

 gấp lắm

14 tháng 11 2021

a, Vì I là trung điểm AC và MK nên AMCK là hbh

Do đó AK//CM hay AK//BM và \(AK=BM=MC\) (M là trung điểm BC)

Vậy ABMK là hbh

b, Từ câu a ta có AMCK là hbh

c, Để AMCK là hcn thì \(AM\perp MC\) hay AM là đường cao tam giác ABC hay tam giác ABC cân tại A (AM vừa là đường cao vừa là trung tuyến)

19 tháng 12 2022

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đo: AMCK là hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

=>AB=MK

c: Để AMCK là hìh vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

d: P=(5+5+6)/2=8

\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)

21 tháng 12 2017

Cho tam giác ABC có AD là phân giác của góc BAC ( D∈∈BC). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AB, AC tại E và F.

a) Chứng minh: Tứ giác AEDF là hình thoi.

b) Trên tia AB lấy điểm G sao cho F là trung điểm của AG. Chứng minh: Tứ giác EFGD là hình bình hành.

c) Gọi I là điểm đối xứng của D qua F, tia IA cắt tỉa ĐỂ tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.

đ) Tìm điều kiện của tam giác ABC để tứ giác ADGI là hình vuông.

6 tháng 9 2019

Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79

24 tháng 12 2017

giúp mk với đang cần gấp

24 tháng 12 2017

A K I C M B 5 5 6  

a. Ta có : IM = IK ( vì K đối xứng với M qua I)

                IA = IC ( vì I là trung điểm AC)

\(\Rightarrow\) AMCK là hbh (1)

Ta lại có: AM là ĐTT của \(\Delta\)cân ABC đồng thời là đường cao

\(\Rightarrow\)\(AM\perp BC\)

\(\Rightarrow\)\(\widehat{AMC}=90^0\)(2)

Từ (1) và (2) suy ra: AMCK là HCN

b. Ta có: \(AC=KM\)( vì AMCK là HCN )

Mà \(AC=AB\)( vì \(\Delta\)ABC cân tại A ) 

\(\Rightarrow\)\(KM=AB\)(3)

Ta lại có: \(AK=MC\)( vì AMCK là HCN )

Mà \(BM=MC\)( vì AM là ĐTT )

\(\Rightarrow\)\(AK=BM\)(4)

Từ (3) và (4) suy ra : ABMK là hbh

c. Để tứ giác AMCK là hình vuông thì:

\(AM=MC\)

Mà \(BM=MC=\frac{BC}{2}\)

\(\Rightarrow\)\(AM=\frac{BC}{2}\)

Vậy \(\Delta\)ABC vuông cân tại A.

d. Ta có: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3cm\)

Áp dụng định lí pitago cho \(\Delta MCK\)vuông tại C

\(MK^2=MC^2+KC^2\)

\(5^2=3^2+KC^2\)

\(25=9+KC^2\)

\(KC^2=25-9\)

\(KC^2=16\)

\(\Rightarrow KC=4cm\)

Diện tích của HCN AMCK là:

\(S_{AMCK}=MC\times KC=3\times4=12cm^2\)