Cho ΔABC có AC > AB. Lấy điểm M à trung điểm của BC. Qua M kẻ đường thẳng d ⊥ BC, đường thẳng d cắt AC tại D.
a, CM: BD = DC
b, Kẻ AH ⊥ d tại H và cắt BC kéo dài tại I, CM: \(\widehat{CAH}=\widehat{DBC}\)
c, CM: ΔABC = ΔICB
d, Biết AB và CI cắt nhau tại N
CM: M, H, N thẳng hàng
Sửa đề: b: Cắt BD kéo dài tại I
a: Xét ΔDBC có
DM vừa là đường cao, vừa là trung tuyến
nên ΔDBC cân tại D
b: AH vuông góc với DM
DM vuông góc với BC
Do đó: AH//BC
=>góc DAI=góc DCB
=>góc CAH=góc DBC
c: Xét ΔDAI có góc DAI=góc DIA
nên ΔDAI cân tại D
=>DA=DI
=>AC=BI
Xét ΔABC và ΔICB có
AB=IC
BC chung
AC=IB
DO đó: ΔABC=ΔICB