Cho hàm số \(f\left(x\right)\) thỏa mãn các điều kiện:
\(a)f\left(0\right)=0\)
\(b)\dfrac{f\left(x_1\right)}{x_1}=\dfrac{f\left(x_2\right)}{x_2}\) với \(x_1;x_2\) khác 0 bất kì của x.
Hãy chứng tỏ rằng \(f\left(x\right)=ax\) với a là 1 hằng số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
Với mọi x khác 0 ta có:
\(\frac{f\left(x\right)}{x}=\frac{f\left(2\right)}{2}=\frac{2}{2}=1\)
=> \(f\left(x\right)=x\)(1)
Với x = 0 thay vào (1) có: f(0) = 0 thỏa mãn
=> f(x) = x thỏa mãn với mọi x
Nguyễn Việt Lâm Trần Trung Nguyên tran nguyen bao quan Shurima Azir Nguyễn Thanh Hằng Mysterious Person Phùng Khánh Linh Aki Tsuki
Mọi người giúp em với ạ, em làm được đến bước \(\dfrac{f\left(x_1\right)}{f\left(x_2\right)}=\dfrac{x_2}{x_1}\Rightarrow f\left(x_1\right).x_1=f\left(x_2\right).x_2\) rồi nhưng không biết làm tiếp thế nào!
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Nguyễn Việt Lâm Trần Trung Nguyên tran nguyen bao quan Shurima Azir Nguyễn Thanh Hằng Mysterious Person Phùng Khánh Linh Aki Tsuki
a) f(0)=0 ---> x = 0
mà y= f(x) = ax --> y= a.0=0
b) ta có: f(x) = ax
mà f(x1)/x1 = f(x2)/x2
--> ax1/x1 = ax2/x2
--> a=a --> a-a = 0
Chắc sai nhưng t nghĩ là làm vậy :vv