Cho a = 1^2016 + 2^2106 + .............+ 2016^2016 cmr : a ko là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tận cùng của A là 8 . Mà số chính phương không bao giờ có tận cùng là 8 ⇒ A không là số chính phương
Giả sử p-1 không là số chính phương
Vì p là tích 2016 số nguyên tố đầu , trong đó có chứa thừa số 3
=> p chia hết cho 3
=> p-1 có dạng 3k - 1 , p+1=3k+1 (k thuộc N)
nhưng 3k+1 , 3k-1 ko có dạng là số chính phương
=> điều giả sử là sai
=> p-1 , p+1 ko là số chính phương
a) 7 chia hết cho 7
7^2 chia hết cho 7
7^3 chia hết cho 7
.....
7^1000 chia hết cho 7
\(\Rightarrow\)A chia hết cho 7(1)
7 không chia hết cho 7^2
7^2 chia hết cho 7^2
7^3 chia hết cho 7^2
..
7^1000 chia hết cho 7^2
\(\Rightarrow\)A không chia hết cho 7^2(2)
Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương
b) Ta thấy: 20^2016 có tận cùng là0
11^2017 có tận cùng là 1
2016^2018 có tận cùng là 6
\(\Rightarrow\)B có tận cùng là 7
\(\Rightarrow\)B không phải là số chính phương
Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)
\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)
\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)
Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)
Tức là \(A\) là số chính phương
THAM KHẢO LICK NÀY NHA :
https://h.vn/hoi-dap/question/783892.html
\(A=3+3^2+3^3+...+3^{2015}+3^{2016}=3+3^2\left(1+3+3^2+3^3+...+3^{2014}\right).\)
Thấy ngay rằng: A chia hết cho 3 nhưng A không chia hết cho 9. Vậy A không phải là số chính phương.
\(\)
Ta có
\(2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=\frac{2016^{2017}+1}{2016^{2017}+1}+\frac{2015}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)
\(2016B=\frac{2016^{2016}+2016}{2016^{2016}+1}=\frac{2016^{2016}+1}{2016^{2016}+1}+\frac{2015}{2016^{2016}+1}=1+\frac{2015}{2016^{2016}+1}\)
Do \(\frac{2015}{2016^{2017}+1}< \frac{2015}{2016^{2016}+1}\Rightarrow2016A< 2016B\Rightarrow A< B.\)
B = \(\frac{2016^{2015}+1}{2016^{2016}+1}\)< A =\(\frac{2016^{2016}+1}{2016^{2017}+1}\)