1, tìm x biết
\(x^2.\left(x-3\right)-4x+12=0\)\(\)
2. chứng minh
\(x-1-x^2< 0\)với mọi số thực x
ai giỏi toán 8 đâu hộ tớ cái ! <3
ai nhanh nhất tick 3 lần nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐKXĐ:\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow x\ne\pm1}\)
\(b,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}+\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\frac{x-1-x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x-1-x^2-x+2}\)
\(=\frac{4x}{1-x^2}\)
\(c,A\ge0\Leftrightarrow\frac{4x}{1-x^2}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}4x\ge0\\1-x^2\ge0\end{cases}\left(h\right)\hept{\begin{cases}4x\le0\\1-x^2\le0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2\le1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\x^2\ge1\end{cases}}}\)
\(\Leftrightarrow0\le x\le1\left(h\right)x\le-1\)
Vậy ///////
- Với \(x=0\Rightarrow144>0\) (đúng)
- Với \(x\ne0\)
\(VT=\left(x-2\right)\left(x-6\right)\left(x+3\right)\left(x+4\right)+57x^2\)
\(=\left(x^2+12-8x\right)\left(x^2+12+7x\right)+57x^2\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)\left(x+\frac{12}{x}+7\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)^2+15\left(x+\frac{12}{x}-8\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8+\frac{15}{2}\right)^2+\frac{3}{4}\right]>0;\forall x\ne0\)
Vậy...
a,
\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
=>\(2x+1=5\)
2x=5-1
2x=4
x=4:2
x=2
b, mình không biết cách làm
a)\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow x=2\)
Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)
Hàm \(f\left(x\right)\) liên tục trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)
\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)
\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)
Vậy pt đã cho luôn có ít nhất 3 nghiệm thực
Bài 1 :
\(x^2\left(x-3\right)-4x+12=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)
Bài 2 :
\(x-1-x^2\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)