Giải phương trình nghiệm nguyên :\(x^4+y^4=z^4+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(x^4+y^4=7z^4+5\Leftrightarrow x^4+y^4+z^4=8z^4+5\)
Áp dụng tính chất lũy thừa bậc 4 của số nguyên a khi chia cho 8 dư 0 hoặc 1
tức là \(a^4\equiv0,1\left(mod8\right)\)
\(\Rightarrow a^4+b^4+c^4\equiv0,1,2,3\left(mod8\right)\)
Mà \(8z^4+5\equiv5\left(mod8\right)\)
vậy pt k có nghiệm nguyên
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
\(x^2+x=y^4+y^3+y^2+y\) (1)
\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)
\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)
Ta có
\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\) (2)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)
\(\Leftrightarrow y\ne-1\)(do y là số nguyên)
lúc đó (1) xảy ra khi
\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\) (3)
tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)
\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)
\(\Leftrightarrow3y^2+4y=4y^2+2y\)
\(\Leftrightarrow y^2-2y=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)
Thay vào (3) tìm được y
Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)