\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5x^2+y^2}{xy}-\frac{3x-2y}{xy}\)
\(=\frac{5x^2+y^2-3x-2y}{xy}\)
Tham khảo nhé~
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)
\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)
\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)
\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)
chỗ cuối tớ sai
\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)
đây nha , e xin lỗi
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}=\frac{5x^2-y^2}{xy}-\frac{3x^2-2xy}{xy}\)
\(=\frac{5x^2-y^2-3x^2+2xy}{xy}=\frac{2x^2+2xy-y^2}{xy}\)
\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\left(Đk:x;y\ne0\right)\)
\(=\frac{5x^2-y^2}{xy}-\frac{3x^2-2xy}{xy}=\frac{5x^2-y^2-3x^2+2xy}{xy}\)
\(=\frac{2x^2+2xy-y^2}{xy}\)\(=\frac{x^2+\left(x+y\right)^2}{xy}\)