K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Đề chỗ cái chữ "và" ấy là dấu bằng đúng ko

17 tháng 12 2018

ko phải 

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

28 tháng 2 2021

Bài 1:Tính cả ước âm thì là số `12`

Bài 2:

Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`

`=>7n+10 vdots d,5n+7 vdots d`

`=>35n+50 vdots d,35n+49 vdots d`

`=>1 vdots d`

`=>d=1`

`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.

Các phần còn lại thì bạn làm tương tự câu a.

10 tháng 10 2021

Thanks,tui cũng đang mắc ở bài 2

8 tháng 11 2015

Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:

b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

Bài 1:

Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 1; 3n + 1)

⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d                        ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d                        ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d

⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

Bài 2:

Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 4n + 12)

⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d                        ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d                        ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d

⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d

⇒⇒2 ⋮⋮d

Mà: 2n + 5 là số lẻ nên d = 1

Do đó: ƯCLN(2n + 5; 4n + 12) = 1

Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.

Bài 3:

Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(12n + 1; 30n + 2)

⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d                        ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d                        ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d

⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(12n + 1; 30n + 2) = 1

Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.

Bài 4:

Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

Bài 5:

Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)

⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d                        ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d                        ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d

⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(5n + 7; 3n + 4) = 1

Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.

Bài 6:

Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)

⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d                        ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d                        ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d

⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(7n + 10; 5n + 7) = 1

Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.

6 tháng 12 2019

THANKS BẠN NHA !

23 tháng 10 2017

4 tháng 11 2023

Ko hiểu ????

4 tháng 11 2023

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh