Chung minh a+b+c>= 3(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) voi a,b,c>0 va a+b+c=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (a+b+c ) 2 = a2+b2+c2+2(ab+bc+ac)
Mà a2+b2+c2 >/ ab+bc+ac ( Bạn tự CM: nhân 2 vế với 2 rồi chuyển vế dưa về HDT)
=> (a+b+c ) 2 = 3(ab+bc+ac) => \(a+b+c\ge3\frac{ab+bc+ca}{a+b+c}\)mà a+b+c=abc
\(a+b+c\ge3\frac{ab+bc+ca}{abc}\)
\(a+b+c\ge3.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
\(\Rightarrowđpcm\)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)
\(\Leftrightarrow a+b+c=abc\)
\(\RightarrowĐPCM\)
cho 1/a+1/b+1/c=2 va :a+b+c=abc
.chung minh rang:
.