Tìm số nguyên n để \(\sqrt{199-x^2-2x}\) +2 là một số chính phương chẵn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{199-x^2-2x}+2=4n^2\)
\(4n^2=\sqrt{199-x^2-2x}+2=\sqrt{200-\left(x+1\right)^2}+2\)
\(\le\sqrt{200}+2< 17\)
\(\Rightarrow-2\le n\le2\)
Thế n vô tìm được x. Chọn giá trị thỏa mãn là xong
A=\(\sqrt{100-\left(x+1\right)^2}+2=\sqrt{\left(10-x-1\right)\left(10+x+1\right)}+2=\sqrt{\left(99-x\right)\left(x+101\right)}+2\)
\(=\left(99-x\right)+\left(x+101\right)+\sqrt{\left(99-x\right)\left(x+101\right)}=\left(\sqrt{99-x}+\sqrt{x+101}\right)^2\)
A là số chính phương chẵn => 99-x ; x+101 là số chính phương ( 99-x ; x+101 luôn cùng chẵn cùng lẻ)(-101</ x</ 99)
......................................................????
Do số chính phương chẵn chỉ có thể là số 2 nên \(\sqrt{199-x^2-2x}\)+2 =2
<=> \(\sqrt{199-x^2-2x}\)=0
<=> 199 -\(x^2\)-2x=0
<=> x=\(-1-10\sqrt{2}\) hoặc x=\(-1+10\sqrt{2}\)
Chuẩn ròi nha.. tick cho mik nha bạn.
a/ ta có:
\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)
\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)
Dấu = xảy ra khi ...