K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

Vì x,y,z tỉ lệ với các số 2,3,4.

⇒x2=y3=z4=k⇒x2=y3=z4=k

⇒⎧⎪⎨⎪⎩x=2ky=3kz=4k⇒{x=2ky=3kz=4k

Thay x = 2k; y = 3k ; z = 4k vào M, ta được:

M=5x+2y+zx+4y−3zM=5x+2y+zx+4y−3z

M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)

M=10k+6k+4k2k+12k−12kM=10k+6k+4k2k+12k−12k

M=20k2kM=20k2k

M=202M=202

M=10M=10

Vậy M = 10.

26 tháng 9 2021

Vì x,y,z tỉ lệ với các số 2,3,4.

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)

Thay x = 2k; y = 3k ; z = 4k vào M, ta được:

\(M=\frac{5x+2y+z}{x+4y+3z}\)

\(=\frac{5.2k+2.3k+4k}{2k+4.3k+3.4k}=\frac{10k+6k+4k}{2k+12k+12k}\)\(=\frac{20k}{26k}=\frac{5}{9}\)

Vậy \(M=\frac{5}{9}\)

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

19 tháng 12 2018

x, y tỉ lệ nghịch vs 2, 3 

=> 2.x=3.y=> \(x=\frac{3}{2}y\)

y, z tỉ lệ thuận với 4, 3 

=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)

Em thay vào tính nhé

20 tháng 12 2018

em cảm ơn cô

11 tháng 12 2018

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

NV
21 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)

Nhân vế với vế

\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:

\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)

\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)

21 tháng 8 2021

ai giúp mk với

22 tháng 12 2021

3r3reR