Tính Tổng Vô Hạn Sau :
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên
\(1 + \frac{1}{3} + {\left( {\frac{1}{3}} \right)^2} + ... + {\left( {\frac{1}{3}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}\).
a) \(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{2}{3}}}{{1 - \frac{{ - 1}}{4}}} = \frac{8}{{15}}\)
b) \(1,\left( 6 \right) = \frac{5}{3}\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{4}\) nên: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ... = \frac{1}{{1 - \frac{1}{4}}} = \frac{4}{3}\)
Chọn C.
a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = - \frac{1}{2}\) và công bội \(q = - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} = - \frac{1}{3}\)
b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)
a) Ta có số hạng thứ x là \(\frac{x}{\left(x+1\right)^2}\)( cái này bạn tự nhìn quy luật của nó rùi CM nhé)
\(\Rightarrow\)Số hạng thứ 35 là khi x=35 và bằng: \(\frac{35}{\left(35+1\right)^2}=\frac{35}{1296}\)
b) Gọi \(Q\left(x\right)=\frac{x}{\left(x+1\right)^2}+\frac{\left(x+1\right)}{\left(x+1+1\right)^2}+....\)
Ta có: \(Q\left(1\right)=\frac{1}{\left(1+1\right)^2}\)
\(Q\left(2\right)=Q\left(1\right)+\frac{2}{\left(2+1\right)^2}\)
\(Q\left(3\right)=Q\left(2\right)+\frac{3}{\left(3+1\right)^2}\)...........
\(\Rightarrow Q\left(x\right)=Q\left(x-1\right)+\frac{x}{\left(x+1\right)^2}\)
\(\Rightarrow\)Ta có quy trình sau: \(X=X+1:A=A+\frac{X}{\left(X+1\right)^2}\) \(CALC\) \(1=\frac{1}{4}===....\)Ấn đến khi X=n ta tíh đc Q(n) (cái này mk ghi quy trình tắt thui bạn tự ghi các phím vào nhé)
Áp dụng quy trình trên ta tíh đc \(Q\left(30\right)\approx2,4140544951\)
\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)
\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)
\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\) và \(q=-\frac{1}{2}\)
Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:
\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)
Nhìu người đăng câu này vậy,đến bao giờ mới hết người đăng câu này hả Nguyễn Mai Linh Chi