cho x,y,z là số thực ,\(xyz=2\sqrt{2}\)
Tìm GTNN của \(P=\frac{x^8+y^8}{x^4+y^4+x^2y^2}+\frac{x^8+z^8}{x^4+z^4+x^2z^2}+\frac{y^8+z^8}{y^4+z^4+y^2z^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)
Khi đó , BĐT cần CM tương đương với:
\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)
Áp dụng bất đẳng thức AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)
Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Ta có:
\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)
\(\Leftrightarrow a=x+y+z\ge6\)
Ta có:
\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)
\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)
Ta chứng minh:
\(\frac{3a^2}{a^2+6a+36}\ge1\)
\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)
Vậy ta có ĐPCM
Đặt \(x=2a;y=2b;z=2c\)
Thì ta có: \(\sqrt{abc}=1\)
Ta có: \(\frac{1}{\sqrt{a}+\sqrt{ab}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ca}+1}=1\)
Ta cần chứng minh:
\(\frac{1}{2}\left(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\right)\le\frac{1}{4}\)
Ta có:
\(VT\le\frac{1}{2}\left(\frac{1}{2\sqrt{a}+2\sqrt{ab}+2}+\frac{1}{2\sqrt{b}+2\sqrt{bc}+2}+\frac{1}{2\sqrt{c}+2\sqrt{ca}+2}\right)\)
\(=\frac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1