cho tam giác ABC vuông tại A biết góc ABC = 60 độ. tia phân giác của góc ABC cắt cạnh ac tại điểm D. qua d kẻ DH vuông góc với BC
a) tính \(\widehat{ABC}\)
b) chứng minh \(\Delta ABD=\Delta HBD\)
c) Chứng minh \(\Delta DHC=\Delta DAK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
CM : a) Xét tam giác ABD và tam giác HBD
có AB = BD (gt)
góc DBA = góc HBD (gt)
BD : chung
=> tam giác ABD = tam giác HBD (c.g.c) (Đpcm)
b) Ta có : tam giác ABD = tam giác HBD (cm câu a)
=> góc A = góc DHB ( hai góc tương ứng)
Mà góc A =900 => góc DHB = 900
=> DH vuông góc với BC
c) Xét tam giác ABC có góc A = 900
=> góc B + góc C = 900 (t/c của 1 tam giác)
=> góc B = 900 - góc C = 900 - 360 = 540
Ta có : góc HBD = góc DBA = góc B/2 = 540/2 = 270
Xét tam giác ADE có A = 900
=> góc ADB + góc DBA = 900 (t/c của 1tam giác)
=> góc ADE = 900 - góc ADB = 900 - 270 = 630
(Em tự vẽ hình, ghi GT-KL nhé)
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
AB = BH (gt)
^ABD = ^HBD (gt)
BD chung
=> \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)
b) Ta có: \(\Delta ABD=\Delta HBD\left(cmt\right)\)
=> ^BAD = ^BHD = 90o
=> \(DH\perp BC\)
c)
\(\Delta ABC\)có : ^BAC + ^ABC + ^CBA = 180o
=> ^ABC = 180o- 90o- 36o = 54o
=> ^DBC = 1/2 ^ABC = 37o
\(\Delta BDC\): ^ADB là góc ngoài tại đỉnh D
=> ^ADB = ^DBC + ^DCB = 37o + 36o = 73o
Chúc em học tốt!!!
a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:
BD chung
∠ABD = ∠HBD (BD là phân giác của ∠ABH)
⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)
b) Do ∆ABD = ∆HBD (cmt)
⇒ AB = BH (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AH (1)
Do ∆ABD = ∆HBD (cmt)
⇒ AD = HD (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AH
c) Xét ∆ADK và ∆HDC có:
AD = HD (cmt)
∠ADK = ∠HDC (đối đỉnh)
DK = DC (gt)
⇒ ∆ADK = ∆HDC (c-g-c)
⇒ ∠DAK = ∠DHC (hai góc tương ứng)
⇒ ∠DAK = 90⁰
Mà ∠DAB = 90⁰
⇒ ∠DAK + ∠DAB = 180⁰
⇒ B, A, K thẳng hàng
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(BA=BH\left(gt\right)\)
\(\widehat{ABD}=\widehat{HBD}\)(ad là tia phân giác của \(\widehat{B}\))
\(BD\)là cạnh chung
Do đó: \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔBAD=ΔBHD
=>BA=BH
Xét ΔBHI vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBI chung
Do đó: ΔBHI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
Xét ΔBIC cân tại B có \(\widehat{IBC}=60^0\)
nên ΔBIC đều
d: Ta có: DA=DH(ΔBAD=ΔBHD)
DH<DC(ΔDHC vuông tại H)
Do đó: DA<DC
Xét tam giác ABD và tam giác HBD có:
BD: chung.
Góc BAD=BHD=90 độ.
Góc ABD=HBD(Phân giác BD)
=> Tam giác ABD=tam giác HBD(ch-gn)
b/ Gọi giao điểm của BD và AH là O.
Xét tam giác AOB và tam giác HOB có:
BO:chung.
Góc ABO=HBO(Phân giác BD)
BA-BH(cạnh tương ứng của tam giác BAD=BHD)
=>Tam giác AOB=tam giác HOB(c-g-c)
=> Góc AOB=HOB(góc tương ứng)=90 độ
Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)
=> AH//KC
Mà BD vuông góc với AH nên BD cũng vuông góc với KC.
c/Xét tam giác ADK và tam giác HDC có:
DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)
Góc DAK=DHC=90 độ.
Góc ADK=HDC(đối đỉnh)
=> tam giác ADK=tam giác HDC(g-c-g)
=> DK=DC(cạnh tương ứng)
Mà trong tam giác vuông HDC có:
DC là cạnh huyền nên DC>DH
=> DK>DH(đpcm)
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)