K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Ta có tận cùng của A là 8 . Mà số chính phương không bao giờ có tận cùng là 8 ⇒ A không là số chính phương

11 tháng 12 2023

Các bạn đặt câu hỏi về đề Toán lớp 4 đi

TT
11 tháng 12 2023

Cậu trả lời đi, sáng mai tớ phải nộp rồi. Nhanh nhé, tớ tìm cho

27 tháng 3 2020

Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

15 tháng 11 2018

ta có 3A=3*(1+3+3^2+3^3+...+3^30)

3A=3+3^2+3^3+3^4+....+3^31

lấy 3A-A=(3+3^2+3^3+3^4+....+3^31)-(1+3+3^2+3^3+3^4+...+3^30)=2A=(3^31-1) vậy A=(3^31-1):2

ta có 3^31-1=34*7+3-1=X17*33-1=Y1*27-1=C7-1=C6

ta có A=C6:2=I3 

ta thấy các số có các cs tận cùng bằng 2;3;5;8 ko phải là số chính phương mà A=I3 có tận cùng là 3

vậy A không phải là số chính phương

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40