( 1 - \(\frac{1}{1+2}\)) . ( 1 - \(\frac{1}{1+2+3}\)) ... ( 1 - \(\frac{1}{1+2+3+...+2018}\) )
Thực hiện phép tính trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+.....+2018}\right)\)
\(=\left(1-\frac{1}{\frac{2.3}{2}}\right).\left(1-\frac{1}{\frac{3.4}{2}}\right).......\left(1-\frac{1}{\frac{2018.2019}{2}}\right)\)
\(=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).......\left(1-\frac{2}{2018.2019}\right)\)
\(=\left(1-\frac{1}{3}\right).\left(1-\frac{5}{6}\right).......\left(1-\frac{1}{2037171}\right)\)
\(=\frac{2}{3}.\frac{5}{6}......\frac{2037170}{2037171}\)
\(=\frac{4}{6}.\frac{10}{12}.......\frac{4074340}{4074342}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}......\frac{2017.2020}{2018.2019}\)
\(=\frac{1.2......2017}{2.3.....2018}.\frac{4.5......2020}{3.4......2019}=\frac{1}{2018}.\frac{2020}{3}=\frac{1010}{3027}\)