K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

14 tháng 5 2021

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi 

18 tháng 8 2019

A B C O M N E I K O'

a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).

b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)

Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng

Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK

Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M)  (2)

Từ (1) và (2) suy ra IM = KA (đpcm).

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN