Cho 2 số a, b thỏa mãn điều kiện a+b=1. Chứng minh rằng: \(a^3+b^3+ab\ge\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
CM BĐT : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\) ( * )
\(\frac{a}{ab+1}=\frac{a\left(ab+1\right)-a^2b}{ab+1}=a-\frac{a^2b}{ab+1}\)
TT ....
Áp dụng BĐT ( * ) với x = \(\sqrt{a}\); y = \(\sqrt{b}\); z = \(\sqrt{c}\) vào bài toán, ta có :
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}=a+b+c-\frac{a^2b}{ab+1}-\frac{b^2c}{bc+1}-\frac{c^2a}{ac+1}\)
\(\ge3-\frac{a^2b}{2\sqrt{ab}}-\frac{b^2c}{2\sqrt{bc}}-\frac{c^2a}{2\sqrt{ac}}=3-\frac{\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)
Kết hợp với bđt Cô-si cho 2 số dương ta đc
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)
\(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)
\(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)
\(=a^2+b^2+c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)
Áp dụng bđt Cô-si cho 2 số dương
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
Cộng từng vế của 6 bđt trên lại ta đc
\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)
\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)
\(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)
Mà a,b,c là các số dương nên a = b = c = 1
Vậy ............
Áp dụng BĐT Cauchy-SChwarz ta có:
\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)
\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)
Dấu "=" bạn tự nghiên cứu nhé :D
DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.
Bạn kia làm sai r
Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Phép chứng minh hoàn tất khi ta cm được
\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Theo bđt AM-GM ta có
\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)
\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)
hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)
Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Xét hai trường hợp:
Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)
Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng
Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)
\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)
Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
(a+b)(a2+ab+b2)+ab
=1(a2+2ab+b2-ab)+ab
=((a+b)2-ab)+ab
=1-ab+ab
=1
\(a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
\(=a^2+b^2+2ab-2ab\)
\(=\left(a+b\right)^2-2ab\)
\(=1-2ab\)
Ta có: \(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1^2\)
\(a^2+2ab+b^2=1\)
Áp dụng BĐT AM-GM ta có:
\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\frac{1}{4}\ge ab\)
\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
đpcm
P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ
\(a^2+b^2\ge2ab\)rồi áp dụng nhé~