K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2022

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

DO đo: ΔABM=ΔDCM

b: ΔABM=ΔDCM

=>góc ABM=góc DCM

=>AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuôngtại F có

MB=MC

góc BME=góc CMF

Do đó: ΔBEM=ΔCFM

=>ME=MF

=>M là trung điểm của EF

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

19 tháng 12 2016

A B C D E F M

a) Xét ΔABM và ΔDCM có:

BM=CM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM=DM(gt)

=>ΔABM=ΔDCM(c.g.c)

b) Vì ΔABM=ΔDCM(cmt)

=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong

=>AB//DC

c)Xét ΔEBM và ΔFCM có:

\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM=MC(gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)

=>ME=MF

=>M là trung điểm của EF

31 tháng 5 2017

2015-12-20_100918

a) Xét ΔABM và ΔDCM, có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b) Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC

c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF

10 tháng 10 2019

A B C E M F D

a ) Xét \(\Delta ABM\)và \(\Delta DCB\) có :

BM = CM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM = DM (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

Vì : \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) . Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow\) AB // DC

c )  Xét \(\Delta EBM\) và \(\Delta FCM\) có :
\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM = MC (gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

\(\Rightarrow\Delta EBM=\Delta FCM\)(cạnh huyền - góc nhọn )

\(\Rightarrow ME=MF\)

\(\Rightarrow M\) là trung điểm của EF ( đpcm)

Chúc bạn học tốt !!!

20 tháng 11 2016

Violympic toán 7

a)

Xét ΔABM và ΔDCM có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b)

Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC (đpcm)

c)

Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF (đpcm)

20 tháng 11 2016

Này ! Cái góc ý ... cậu viết sao vậy ?

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

27 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=DM\\BM=MC\\\widehat{AMB}=\widehat{DMC}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\\ b,\Delta ABM=\Delta DCM\Rightarrow\widehat{B}=\widehat{MCD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB\text{//}CD\\ c,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\\ \Rightarrow AM\text{ là p/g }\widehat{A}\\ d,\Delta AMB=\Delta AMC\Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

Mà M là trung điểm BC nên AM là trung trực BC

27 tháng 12 2021

còn câu d) nx bn

27 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

16 tháng 2 2020

Bài này mọi người đăng suốt mà >: vào câu hỏi tương tụ cũng có bài y hệt -.-

a Xét tam giác AMB và tam giác DMC 

AM=DM (gt)

BM=CM (gt)

AMB^=DMC^ (đối đỉnh)

=>tam giác AMB = tam giác DMC (c-g-c)

=>ABM^=DMC^ (hai góc tương ứng)

b, Theo câu a ta có : ABM^=DMC^

Do 2 góc này ở vị trí sole trong và bằng nhau

=>AB//DC 

C,Xét tam giác ABM và tam giác ACM 

AB = AC (gt)

AM cạnh chung

BM=CM (gt)

=>Tam giác ABM = tam giác ACM (c-c-c)

=>AMB^=AMC^

Do AMB^+AMC^=180*

=> AMB^=AMC^=180*/2=90* (đpcm)

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao