K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(16.4x=48\)

\(\Rightarrow4x=\frac{48}{16}\)

\(\Rightarrow4x=3\)

\(\Rightarrow x=\frac{3}{4}\)

\(\left|x-2\right|+1=5\)

\(\Rightarrow\left|x-2\right|=5-1\)

\(\Rightarrow\left|x-2\right|=4\)

\(\Rightarrow\orbr{\begin{cases}x-2=-4\\x-2=4\end{cases}}\)

\(\text{* Trường hợp : }x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-2\)

\(\text{* Trường hợp : }x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

\(\text{Vậy }x\in\left\{-2;6\right\}\)

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

27 tháng 12 2017

khó quá khó tìm,k đi!!!!!

27 tháng 11 2015

đặt 3n+2 và 2n+1 = d 

suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d

suy ra : (3n+2)-(2n+1) chia hết cho d

suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d

suy ra : 1 chia hết cho d

suy ra d=1

vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau

tick cho mình nhé đúng rồi đấy

27 tháng 11 2015

Gọi UCLN(2n+5, 3n+7) là d 

Ta có 2n+5 chia hết cho d

=> 3(2n+5) chia hết cho d

=> 6n+15 chia hết cho d   (1) 

Ta có: 3n+7 chia hết cho d

=> 2(3n+7) chia hết cho d 

=> 6n+14 chia hết cho d    (2) 

Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d 

=> 1 chia hết cho d

=> d=1

=> UCLN(2n+5, 3n+7) =1

Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau

Gọi ƯCLN(7n+10;5n+7)=a

Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a

=> 35n+50 chia hết cho a (1)

            5n+7 chia hết cho a => 7(5n+7) chia hết cho a

=> 35n + 49 chia hết cho a (2)

Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a

=> 1 chia hết cho a

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

tick ủng hộ nha

 

21 tháng 11 2016

Gọi UCLN(2n+5,n+3) là d

Ta có: 2n+5 chia hết cho d

          n+3 chia hết cho d => 2(n+3) chia hết cho d => 2n+6 chia hết cho d

=> 2n+6 - (2n+5) chia hết cho d

=> 2n + 6 - 2n - 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(2n+5,n+3) = 1

=> 2n+5 và n+3 là 2 số nguyên tố cùng nhau

21 tháng 11 2016

goi d uoc chung cua hai so tren

theo tinh chat chia het ta co

[2(n+3)-(2n+5)] chia het cho d

1 chia het cho d

=> d =1

=> dpcm

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

14 tháng 11 2016
  • Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)
  • Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy  mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)
  • Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)

Do đó, (3) là kết luận sai

Từ (1) và (2) cho thấy 2n + 6 chia hết cho n

Vì 2n chia hết cho n nên 6 chia hết cho n

Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)

Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)

Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn

=> m = 2.2 + 5 = 9

Vậy m = 9; n = 2 thỏa mãn đề bài

14 tháng 11 2016

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????