Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC.
a) Cm tam giác ABM= ACM
b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC
c) CM AN vuông góc với AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung điểm của ME
Do đó: AMCE là hình bình hành
Suy ra: AE=CM
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAMH và ΔANH có
AM=AN
góc MAH=góc NAH
AH chung
Do đó: ΔAMH=ΔANH
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD//HC
hay AD//BC
a) + M là trung điểm của BC (gt)
\(\Rightarrow\)MB = MC ( tính chất) (1)
Xét tam giác ABM và tam giác ACM có: AM chung (2)
AB = AC (gt) (3)
(1)(2)(3) \(\Rightarrow\)Tam giác ABM = tam giác ACM (c-c-c)
Câu b mk thấy vô lí vì BC và AC k trùng nhau mà M là trung điểm của BC nên k thể là trung điểm của AC
Tam giác ABC cân tại A (do AB = AC)
M là trung điểm BC
=> AM là trung tuyến, phân giác, trung trực của tam giác ABC
a) Chứng minh tam giác ABM= ACM
Xét tam giác ABM và tam giác AMC, có
- AB = AC
- AM chung
- MB = MC
=> tam giác ABM= ACM (đpcm)
b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC
Bạn viết sai đề bài thì phải, theo mình hiểu thì đề đúng phải là:
Gọi I là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. Chứng minh tam giác AIN=CIM suy ra AN//BC
Xét tam giác AIN và tam giác CIM, có
- AI = CI (I là trung điểm AC)
- IM = IN (I là trung điểm MN)
- góc I đối nhau
==> tam giác AIN = tam giác CIM (đpcm)
Xét tứ giác AMCN, có
- 2 đường chéo của tứ giác AMCN cắt nhau tại I
- I vừa là trung điểm AC, vừa là trung điểm MB
=> tứ giác AMNC là hình bình hành (định lý hình bình hành có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AN // MC, mà MC nằm trên BC
=> AN // BC (đpcm)
c) Chứng minh AN vuông góc với AM
Ta có:
- AM vuông góc BC (AM là phân giác, trung trực, trung tuyến của tam giác ABC), nên AM vuông góc BC
- AN // BC (chứng minh trên)
=> AN vuông góc AM (đpcm)