Cho tam giác ABC vuông tại A. kẻ BI là phân giác của góc ABC (I thuộc AC) .kẻ ID vuông góc BC tại D , tía BI cắt BA tại E. chứng minh rằng:
a/AB=BD
b/tam giác BEC cân
c/AD song song với EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhoa!!
vì tam giác ABC vuông tại A và ID vuông góc với BC tại I nên tam giác ABI và tam giác BID vuông
a) xét tam giác : ABI và DBI, có:
IB là cạnh chung
góc ABI = góc IBC (gt)
=> tam giác ABI = tam giác DBI ( cạnh huyền - góc nhọn )
Dễ hình học mak ko có hình thôi hình tự zẻ đi!
a/ Xét tam giác BAI và tam giác BDI có:
BI chung
ABI=DBI(phân giác góc B)
góc A=góc D=90 độ
=> tam giác BAI=BDI(ch-gn)
=> AB=BD (cạnh tương ứng tik nhé
a) xét tg BAI và tg BDE có:
\(\widehat{ABI}=\widehat{IBD}\)( BI là tia pg )
BI: chung
BAI = BDI (=90 độ )
=> 2 tam giác bằng nhau (g-c-g)
=> AB=BD
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC