Giải giúp mình với cho một số có ba chữ số aba chứng minh rằng aba chia hết cho 7 thì a+b cũng chia hết cho 7 và ngược lại
Cảm ơn các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)
=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)
=15(2+25+29+...+217)
=30.(1+2⁴+28+...+216) chia hết cho 10
=> A có tận cùng là 0
b) Có a-5b chia hết cho 17
=> 10(a-5b) chia hết cho 17.
=> 10a-50b chia hết cho 17.
Mà 51b= 17×3b chia hết cho 17
=> 10a-50b+51b chia hết cho 17
=> 10a+b chia hết cho 17
707 nhé
707 : 7 = 101
7 + 0 = 7 : 7 = 1
aba là 707