Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ..... + 3 mũ 2014
a, Lập công thức tính A.
b, Chứng minh rằng : A chia hết cho 130
c, B có là số chính phương không ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
a/Ta có : B= 3+3^2+3^3+...+3^2014
=> 3B= 3.(3+3^2+3^3+...+3^2014)
=> 3B= 3^2+3^3+3^4+...+3^2015
=> 3B-B= 3^2015-3
=> 2B= 3^2015-3
=> B= 3^2015-3/2
b/ mình thấy đề có gì sai sai
bài này mình đi học đội tuyển làm chán rồi nhưng thử vào đề của cậu thì không chia het .Thông cảm nhé
còn câu a thì 3^2 là 3 mũ 2 nhé thấy cậu viết vậy nhìn khổ ghê
A không phải là số chính phương nhé!
Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:
A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)
Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.
Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:
A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1
Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.