Giải hệ phương trình: \(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo:
https://olm.vn/hoi-dap/detail/264041645597.html
Sai thì hong bít j đâu ;-;
\(7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\)
\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(x^3-3x^2y+3xy^2-y^3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^3-\left(x-y\right)^3=0\)
\(\Leftrightarrow2x-1=x-y\)
\(\Leftrightarrow y=1-x\)
Thế xuống dưới:
\(\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
\(\Leftrightarrow\sqrt[3]{3x+2}-2+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt[3]{\left(3x+2\right)^2}+2\sqrt[3]{3x+2}+4}+\dfrac{1}{\sqrt{x+2}+2}\right)=0\)
a) ĐK:x\(\ge\dfrac{3}{4}\)
\(3\left(x^2-1\right)+4x=4x\sqrt{4x-3}\Leftrightarrow3x^2-3+4x=4x\sqrt{4x-3}\Leftrightarrow4x-3-4x\sqrt{4x-3}+4x^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x\right)^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x-x\right)\left(\sqrt{4x-3}-2x+x\right)^2=0\Leftrightarrow\left(\sqrt{4x-3}-3x\right)\left(\sqrt{4x-3}-x\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}-3x=0\\\sqrt{4x-3}-x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}=3x\left(x\ge0\right)\\\sqrt{4x-3}=x\left(x\ge0\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x-3=9x^2\\4x-3=x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)(*)
Vì 9x2-4x+3>0 nên 9x2-4x+3=0(loại)
(*)\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy S={1;3}
b)
\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\left(1\right)\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\left(2\right)\end{matrix}\right.\)(1)⇔ y3 - 3y2x + 3x2y + 7x3 = 1 - 6x + 12x2 <=> y3 - 3y2x + 3x2y - x3 = 1 - 6x + 12x2 - 8x3 <=> (y - x)3 = (1 - 2x)3 <=> y - x = 1 - 2x <=> y = 1 - x
Thế vào (2)\(\Leftrightarrow\sqrt[3]{4x+1-x+1}+\sqrt{3x+2\left(1-x\right)}=4\Leftrightarrow\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
Đặt a=\(\sqrt[3]{3x+2}\Leftrightarrow a^3=3x+2\)
b=\(\sqrt{x+2}\left(b\ge0\right)\Leftrightarrow b^2=x+2\Leftrightarrow3b^2=3x+6\)
Vậy 3b2-a3=4
Vậy ta sẽ có hệ phương trình \(\left\{{}\begin{matrix}3b^2-a^3=4\\a+b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3b^2-a^3=4\left(3\right)\\b=4-a\end{matrix}\right.\)
(3)\(\Leftrightarrow3\left(4-a\right)^2-a^3=4\Leftrightarrow a^3-3a^2+24a-44=0\Leftrightarrow\left(a-2\right)\left(a^2-a+22\right)=0\)(*)
Ta có a2-a+22>0
Vậy (*)\(\Leftrightarrow a-2=0\Leftrightarrow a=2\Leftrightarrow b=2\)
Vậy \(\left\{{}\begin{matrix}\sqrt[3]{3x+2}=2\\\sqrt{x+2}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x+2=8\\x+2=4\end{matrix}\right.\)\(\Leftrightarrow x=2\Leftrightarrow y=-1\)
Vậy (x;y)=(2;-1)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
bài này mình chưa giải dc triệt để ở cái cuối
\(2x^3-4x^2+3x-1=2x^3\left(2-y\right)\sqrt{3-2y}\) \(\left(y\le\dfrac{3}{2}\right)\)
\(\Leftrightarrow4x^3-8x^2+6x-2=2x^3\left(4-2y\right)\sqrt{3-2y}\left(1\right)\)
\(đặt:\sqrt{3-2y}=a\ge0\Rightarrow a^2+1=4-2y\)
\(\left(1\right)\Leftrightarrow4x^3-8x^2+6x-2=2x^3.\left(a^2+1\right)a\)
\(\Leftrightarrow4x^3-8x^2+6x-2-2x^3\left(a^2+1\right)a\)
\(\Leftrightarrow-2\left(xa-x+1\right)\left[\left(xa\right)^2+x^2a+2x^2-xa-2x+1\right]=0\)
\(\Leftrightarrow x.a-x+1=0\Leftrightarrow x\left(a-1\right)=-1\Leftrightarrow x=\dfrac{-1}{a-1}\)
\(\left(\sqrt{x\sqrt{3-2y}-\sqrt{x}}\right) ^2=x\sqrt{3-2y}-\sqrt{x}\)
\(=\dfrac{-a}{a-1}-\sqrt{\dfrac{-1}{a-1}}\)
\(\left(\sqrt{x\sqrt{3-2y}+2}+\sqrt{x+1}\right)=\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\)
\(\Rightarrow\left(\dfrac{-a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\left(\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\right)-4=0\)
\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right).2\sqrt{\dfrac{a-2}{a-1}}=4\)
\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{\dfrac{a-2}{a-1}}=2\)
\(\Leftrightarrow\left(-1+\dfrac{-1}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{1-\dfrac{1}{a-1}}=2\)(3)
\(đặt:1-\dfrac{1}{a-1}=u\Rightarrow\sqrt{-\dfrac{1}{a-1}}=\sqrt{u-1}\)
\(\left(3\right)\Leftrightarrow\left(u-2-\sqrt{u-1}\right)\sqrt{u}=2\)
bình phương lên tính được u
\(\Rightarrow u=.....\Rightarrow a\Rightarrow y=...\Rightarrow x=....\)
Với \(x=0\) không phải nghiệm
Với \(x>0\) chia 2 vế cho pt đầu cho \(x^3\)
\(\Rightarrow2-\dfrac{4}{x}+\dfrac{3}{x^2}-\dfrac{1}{x^3}=2\left(2-y\right)\sqrt{3-2y}\)
\(\Leftrightarrow1-\dfrac{1}{x}+\left(1-\dfrac{1}{x}\right)^3=\sqrt{3-2y}+\sqrt{\left(3-2y\right)^3}\)
Xét hàm \(f\left(t\right)=t+t^3\Rightarrow f'\left(t\right)=1+3t^2>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow1-\dfrac{1}{x}=\sqrt{3-2y}\)
Thế vào pt dưới:
\(\left(\sqrt{x\left(1-\dfrac{1}{x}\right)-\sqrt{x}}\right)^2\left(\sqrt{x\left(1-\dfrac{1}{x}\right)+2}+\sqrt{x+1}\right)=4\)
\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\left(\sqrt{x+1}+\sqrt{x+1}\right)=4\)
\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\sqrt{x+1}=2\)
Phương trình này ko có nghiệm đẹp, chắc bạn ghi nhầm đề bài của pt dưới
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)
3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\left(1\right)\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\left(2\right)\end{matrix}\right.\)
(1)⇔ y3 - 3y2x + 3x2y + 7x3 = 1 - 6x + 12x2 <=> y3 - 3y2x + 3x2y - x3 = 1 - 6x + 12x2 - 8x3 <=> (y - x)3 = (1 - 2x)3 <=> y - x = 1 - 2x <=> y = 1 - x
Thế vào (2)\(\Leftrightarrow\sqrt[3]{4x+1-x+1}+\sqrt{3x+2\left(1-x\right)}=4\Leftrightarrow\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
Đặt a=\(\sqrt[3]{3x+2}\Leftrightarrow a^3=3x+2\)
b=\(\sqrt{x+2}\left(b\ge0\right)\Leftrightarrow b^2=x+2\Leftrightarrow3b^2=3x+6\)
Vậy 3b2-a3=4
Vậy ta sẽ có hệ phương trình \(\left\{{}\begin{matrix}3b^2-a^3=4\\a+b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3b^2-a^3=4\left(3\right)\\b=4-a\end{matrix}\right.\)
(3)\(\Leftrightarrow3\left(4-a\right)^2-a^3=4\Leftrightarrow a^3-3a^2+24a-44=0\Leftrightarrow\left(a-2\right)\left(a^2-a+22\right)=0\)(*)
Ta có a2-a+22>0
Vậy (*)\(\Leftrightarrow a-2=0\Leftrightarrow a=2\Leftrightarrow b=2\)
Vậy \(\left\{{}\begin{matrix}\sqrt[3]{3x+2}=2\\\sqrt{x+2}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x+2=8\\x+2=4\end{matrix}\right.\)\(\Leftrightarrow x=2\Leftrightarrow y=-1\)
Vậy (x;y)=(2;-1)