K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) Chứng minh tam giac AMB = tam giac DMC

Xét tam giác MAB và tam giác MDC, có

- MA = MD (M là trung điểm AD)

- MB = MD (M là trung điểm BD) 

- Góc M đối nhau

=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh)  (đpcm)

b) Chứng minh DC vuông góc AC

Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)

=> góc A1 + góc A2 = 90 độ

mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)

=> góc ADC + góc A2 = 90 độ

Xét tam giác CAD,

có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ

=> góc ACD = 90 độ

=> tam giác DAC vuông tại C

Ta có DC vuông góc AC tại C

và BA vuông góc AC tại A

=> BA // DC (đpcm)

c) AM = 1/2BC

Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)

Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:

Xét tứ giác ABDC có:

- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)

- DC // BA

=> tứ giác ABDC là hình bình hành

và có góc A vuông

=> tứ giác ABDC là hình chữ nhật

=> 2 đường chéo của hình chữ nhật là AD = BC

mà M là trung điểm của AD và BC

=> AM = 1/2 BC (đpcm)

c: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2

18 tháng 12 2023

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMBD và ΔMCA có

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔMBD=ΔMCA

=>\(\widehat{MBD}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có

DB=AC

\(\widehat{DBK}=\widehat{ACH}\)

Do đó: ΔDKB=ΔAHC

=>BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có; ΔMAB=ΔMDC

=>AB=DC

Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB//CE

DC,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

ta có: AB=CD

AB=CE

Do đó: DC=CE

mà D,C,E thẳng hàng

nên C là trung điểm của DE

30 tháng 12 2021

a/  Xét △ABM và △DMC có:

AM=MD(gt)

MB=MC(gt)

^AMB=^CMD(đối đỉnh)

⇒ΔAMB=ΔDMC(cmt)(đpcm).

b/ Ta có: ΔAMB=ΔDMC(cmt)

⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]

Vậy: AB // CD (đpcm).

24 tháng 10 2016

Ta có hình vẽ sau:

 

A B C D M 1 2

GT: ΔABC ; \(\widehat{A}\) = 90o

MB = MC ; MA = MD

KL: a) ΔAMB = DMC

a) Xét ΔAMB và ΔDMC có:

MA = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)

MB = MC (gt)

\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)

 

24 tháng 10 2016

ý b vs ý c mk chua nghĩ ra

hỳ

9 tháng 3 2022

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có; ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

c: Xét ΔNAB và ΔNCE có

NA=NC

\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)

NB=NE

Do đó: ΔNAB=ΔNCE

=>AB=CE 

Ta có: ΔNAB=ΔNCE

=>\(\widehat{NAB}=\widehat{NCE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CE,CD có điểm chung là C

Do đó: E,C,D thẳng hàng

Ta có: EC=AB

CD=AB

Do đó: EC=CD
mà E,C,D thẳng hàng

nên C là trung điểm của ED