Cho Tam giác vuông ABC dựng ra phia ngoài tam giác ABE Dựng ra phía ngoài tam giác ACF
CMR : EC=BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : góc EBN = góc FCA(1)
lại có : góc EBC = 90 độ ; FCB = 90 độ
=> EBC = FBC (2)
từ (1) và (2) suy ra:
góc PBC = góc PCB
tiếp tục có:
\(\widehat{BPH}+\widehat{CPH}=2.\widehat{EBP}\)
mà \(2.\widehat{EBP}=\widehat{PBC}\)
\(\Rightarrow\widehat{BPH}+\widehat{CPH}=\widehat{PBC}\)
\(mà\widehat{BPH}+\widehat{CPH=}\widehat{BPC}\)
\(\Rightarrow\widehat{PBC}=\widehat{PBC}=\widehat{PCB}\)
từ đó suy ra : tam giác PBC là tam giác đều
( bn không hỉu chỗ nào thì hỏi lại mình nhe)
Theo hình vẽ thì $PBC$ làm sao mà là tam giác đều được nhỉ?
Gọi M là giao điểm của PE với AB.
Ta thấy rằng \(CF=AF=PE,PF=AE=EB\)
Đồng thời \(\widehat{BEP}=60^o-\widehat{AEP}=60^o-\widehat{AFP}=\widehat{PFC}\)
Dẫn đến \(\Delta PBE=\Delta CPF\left(c.g.c\right)\)
\(\Rightarrow PB=PC\) (1)
Mặt khác, \(\widehat{AMF}=\widehat{MAE}=60^o=\widehat{ACF}\) nên tứ giác AMCF nội tiếp.
\(\Rightarrow\widehat{BAC}=\widehat{PFC}\). Mà lại có \(AB=PF,AC=FC\) nên suy ra \(\Delta ABC=\Delta FPC\left(c.g.c\right)\)
\(\Rightarrow PC=BC\) (2)
Từ (1) và (2) \(\Rightarrow\Delta PBC\) đều (đpcm)
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB=MC
AE=EB
AM=BM
=>EM là trung trực của AB
=>EM vuông góc AB
=>EM//AC
MA=MC
FA=FC
=>MF là trung trực của AC
=>MF vuông góc AC
+>ME vuông góc MF
=>góc GMF=90 độ
Gọi D,K lần lượt là trung điểm của AB,AC
=>DM=AC/2; MK=AB/2
GD=1/3ED=1/3*AB*căn 3/2=AB*căn 3/6
KF=AC*căn 3/2
GM=căn 3/6AB+1/2AC
MF=căn 3/2*AC+1/2*AB
=>GN=căn 3/3(AB/2+căn 3/2*AC)
=MF*căn 3/3
=>MF=căn 3*GM
=>góc GFM=30 độ
=>góc MGF=60 độ
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD