K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2019

\(\left\{{}\begin{matrix}\left(x-y\right)^2+xy=3\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-y\right)^2+3xy=9\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\)

\(\Rightarrow7\left(x-y\right)^3-9\left(x-y\right)=-2\left(x-y\right)^2\)

\(\Leftrightarrow7\left(x-y\right)^3+2\left(x-y\right)^2-9\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(7\left(x-y\right)^2+2\left(x-y\right)-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-y=1\\x-y=\dfrac{-9}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=x-1\\y=x+\dfrac{9}{7}\end{matrix}\right.\)

TH1: \(y=x\) thay vaò pt đầu:

\(x^2-x^2+x^2=3\left(x-x\right)\Rightarrow x^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

TH2: \(y=x-1\) thay vào pt đầu:

\(x^2-x\left(x-1\right)+\left(x-1\right)^2=3\Leftrightarrow x^2-x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-1\Rightarrow y=-2\end{matrix}\right.\)

TH3: \(y=x+\dfrac{9}{7}\):

\(x^2-x\left(x+\dfrac{9}{7}\right)+\left(x+\dfrac{9}{7}\right)^2=\dfrac{-27}{7}\Leftrightarrow x^2+\dfrac{9}{7}x+\dfrac{270}{49}=0\) (vô nghiệm)

Vậy hệ đã cho có 3 cặp nghiệm:

\(\left(x;y\right)=\left(0;0\right);\left(2;1\right);\left(-1;-2\right)\)

29 tháng 7 2021

a, Cộng vế theo vế hai phương trình ta được:

\(x^2+y^2+2xy+x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)

TH1: \(x+y=1\)

\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y=-2\)

\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)

 

29 tháng 7 2021

b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)

TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)

Đặt \(x+y=u;xy=v\)

Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)

30 tháng 7 2021

a, ĐK: \(x,y\ge0\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+3}=x+1\)

\(\Leftrightarrow x+3=x^2+2x+1\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)

Vậy pt đã cho có nghiệm \(x=y=1\)

30 tháng 7 2021

b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)

Vậy ...

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

30 tháng 7 2021

a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)

Phương trình này vô nghiệm

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)

30 tháng 7 2021

b, ĐK: \(xy>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 1:

Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):

$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$

$\Leftrightarrow 9y^2-42y+48=0$

$\Leftrightarrow (y-2)(9y-24)=0$

$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$

Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 3: Bạn xem lại PT(2) là -x+y đúng không?

Câu 4:

$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$

$\Leftrightarrow 3^3-9xy=7$

$\Leftrightarrow xy=\frac{20}{9}$

Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:

$X^2-3X-\frac{20}{9}=0$

$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị

$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.

 

NV
27 tháng 3 2021

Câu a pt đầu là \(x^2+2xy^2=3\) hay \(x^3+2xy^2=3\) vậy nhỉ? Nhìn \(x^2\) chẳng hợp lý chút nào

b. \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^4+y^2-2x^2y\right)+xy+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)

Trừ vế cho vế:

\(\left(x^2-y\right)\left(xy+1\right)-\left(x^2-y\right)^2=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left[y\left(x+1\right)+\left(x+1\right)\left(1-x\right)\right]=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x+1\right)\left(y+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x^2\\x=-1\\y=x-1\end{matrix}\right.\)

- Với \(y=x^2\) thế xuống pt dưới:

\(x^4+x^4-x^3\left(2x-1\right)=1\Leftrightarrow x^3=1\Leftrightarrow...\)

....

Hai trường hợp còn lại bạn tự thế tương tự