So sanh: x=\(\sqrt{2019}\)va y=\(2\sqrt{2018}-\sqrt{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
a, x=\(\frac{1\left(\sqrt{2019}+\sqrt{2018}\right)}{2019-2018}\) và y=\(\frac{1\left(\sqrt{2018}+\sqrt{2017}\right)}{2018-2017}\) (Trục căn thức ở mẫu)
\(\Leftrightarrow\) x=\(\sqrt{2019}+\sqrt{2018}\) và y=\(\sqrt{2018}+\sqrt{2017}\)
b, Ta có : x - y = (\(\sqrt{2019}+\sqrt{2018}\) ) - ( \(\sqrt{2018}+\sqrt{2017}\) )
= \(\sqrt{2019}-\sqrt{2017}\) > 0
\(\Rightarrow\) x - y > 0 \(\Leftrightarrow\) x > y
Áp dụng BĐT Cauchy–Schwarz ta được:
\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)
Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)
Vậy đẳng thức ko xảy ra hay \(x>y\)
Bài 1:
\(A=\dfrac{2}{\sqrt{2017}+\sqrt{2015}}\)
\(B=\dfrac{2}{\sqrt{2019}+\sqrt{2017}}\)
mà \(\sqrt{2015}< \sqrt{2019}\)
nên A>B
Lời giải:
Câu GPT: bạn xem lại đề bài.
Câu so sánh
Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:
\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)
\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)
a, \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\)-\(\frac{3\left(1+\sqrt{3}\right)}{1+\sqrt{3}}\)
=\(\sqrt{2}-3\)
b,X=\(\sqrt{2019}+\sqrt{2018}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2019}+\sqrt{2018}\))
Y=\(\sqrt{2018}+\sqrt{2017}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2018}+\sqrt{2017}\))
So sánh:X & Y<=>X-\(\sqrt{2018}\)&Y-\(\sqrt{2018}\)(Trừ hai vế cho \(\sqrt{2018}\)) <=>\(\sqrt{2019}\)&\(\sqrt{2017}\)
Có:2019>2017
=>\(\sqrt{2019}>\sqrt{2017}\)
=>X>Y
Câu b, mk ko bt có lm đúng ko?
Lời giải:
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(\sqrt{2019}+\sqrt{2018}>\sqrt{2018}+\sqrt{2017}\Rightarrow \frac{1}{\sqrt{2019}+\sqrt{2018}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\Rightarrow \sqrt{2019}-\sqrt{2018}< \sqrt{2018}-\sqrt{2017}\)
< nha
hoc tot
Giả sử \(\sqrt{2009}\ge2\sqrt{2008}-\sqrt{2007}\)
\(\Leftrightarrow\sqrt{2009}-\sqrt{2008}\ge\sqrt{2008}-\sqrt{2007}\)
\(\Leftrightarrow\frac{1}{\sqrt{2009}+\sqrt{2008}}\ge\frac{1}{\sqrt{2008}+\sqrt{2007}}\) (sai)
Vậy \(\sqrt{2009}< 2\sqrt{2008}-\sqrt{2007}\)