một ca nô xuôi từ bến A đến B với vận tốc 30km/h sau đó lại ngược về từ B về A thời gian xuôi ít hơn thời gian đi ngược 1 giờ 20 phút tính khoảng cách giữa 2 bến A đến B biết vận tóc dòng nước là 5 km/h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 40 phút=2/3h
Gọi :
-sAB là khoảng cách giữa A và B
-vcn là vận tốc của ca nô
-vxd là vận tốc xuôi dòng của ca nô
-vnd là vận tốc ngược dòng của ca nô
Vận tốc của ca nô khi đi xuôi dòng là 30km/h
<=>vn+vcn=30km/h
Hay 3+vcn=30 =>vcn=27km/h
Thời gian đi xuôi dòng của ca nô là:
txd=sAB/vxd=sAB/30
Thời gian đi ngược dòng của ca nô là:
tnd=sAB/vnd=sAB/vcn-vn
=sAB/27-3=sAB/24
Theo đề ta có:
tnd-txd
=sAB/24 - sAB/30=2/3h
=>sAB=80km/h
Gọi x (km) là độ dài quãng đường AB (x > 0)
Vận tốc khi đi từ A đến B: 20 - 5 = 15 (km/h)
Vận tốc khi đi từ B về A: 20 + 5 = 25 (km/h)
Thời gian khi đi từ A đến B: x/15 (h)
Thời gian khi đi từ B về A: x/25 (h)
2 giờ 40 phút = 8/3 (h)
Theo đề bài, ta có phương trình
x/15 - x/25 = 8/3
5x - 3x = 8.25
2x = 200
x = 200 : 2
x = 100 (nhận)
Vậy khoảng cách từ A đến B là 100 km
Trả lời : Bài làm
Đổi :\(1h20p=\frac{4}{3}h\)
Vận tốc thực của cano là:30-5=25 (km/h)
Gọi x là độ dài từ A đến B
Thời gian cano xuôi dòng là:\(\frac{x}{25+5}h\)
Thời gian cano ngược dòng là: \(\frac{x}{25-5}h\)
Từ đó ta có pt: \(\frac{x}{20}-\frac{x}{30}=\frac{4}{3}\)
Giải ra được \(x=80km\)
Mk ko chắc
Tk mk nha
-Gọi khoảng cách giữa bến A và bến B là x (km) (x>0).
-Vận tốc của ca nô ngược dòng là: \(36-3-3=30\) (km/h).
-Thời gian đi xuôi là: \(\dfrac{x}{36}\left(h\right)\)
-Thời gian đi ngược là: \(\dfrac{x}{30}\left(h\right)\)
-Theo đề bài ta có phương trình sau:
\(\dfrac{x}{30}-\dfrac{x}{36}=\dfrac{2}{3}\)
\(\Leftrightarrow x\left(\dfrac{1}{30}-\dfrac{1}{36}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow x.\dfrac{1}{180}=\dfrac{2}{3}\)
\(\Leftrightarrow x=120\left(nhận\right)\)
-Vậy khoảng cách giữa bến A và bến B là 120 km.
Gọi độ dài AB là a
Thời gian đi là a/33
Thời gian về là a/27
Theo đề, ta co: a/27-a/33=2/3
=>a=99
Bài 2:
Gọi vận tốc cano là x
Vận tốc cano khi đi là x+3
Vận tốc cano khi về là x-3
Theo đề, ta có: 15/x+3+15/x-3=3-1/3=8/3
=>(15x-45+15x+45)/(x^2-9)=8/3
=>8x^2-72=3*30x=90x
=>8x^2-90x-72=0
=>x=12
1:
Gọi vận tốc cano là x
=>Vận tốc lúc đi là x+4, vận tốc lúc về là x-4
Theo đề, ta co: 30/x-4-30/x+4=1
=>(30x+120-30x+120)/(x^2-16)=1
=>x^2-16=240
=>x^2=256
=>x=16
Gọi khoảng cách giữa AB là x(km).
Thời gian cano đi xuôi là: x/30(h)
Vận tốc cano ngược dòng là 20km
Vậy thời gian di ngược là x/20(h)
Thời gian xuôi ít hơn tg ngược 1h20'=4/3h nên ta có pt x/30+4/3=x/20
x = 80km
Gọi khoảng cách AB là x
Vận tốc thực ko đổi
=>Vận tốc từ B về A là 30km/h
Theo đề, ta có: x/33+x/27=2/3
=>x=99/10
Gọi khoảng cách giữa A và B là \(x\left(km\right)\)
Khi đó bạn sẽ có 2 phương trình theo đề bài:
Thời gian khi xuôi dòng từ A đến B là: \(t_1=\dfrac{x}{\left(30+3\right)}\)
Thời gian khi ngược dòng từ B về A là: \(t_2=\dfrac{x}{\left(30-3\right)}\)
Mà thời gian khi xuôi dòng ít hơn thời gian khi ngược dòng là \(\dfrac{2}{3}\) giờ
\(t_1+\dfrac{2}{3}=t_2\)
\(\Leftrightarrow\dfrac{x}{\left(30+3\right)}+\dfrac{2}{3}=\dfrac{x}{\left(30-3\right)}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{2}{3}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x}{33}+\dfrac{22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow\dfrac{x+22}{33}=\dfrac{x}{27}\)
\(\Leftrightarrow27\left(x+22\right)=33x\)
\(\Leftrightarrow27x+594=33x\)
\(\Leftrightarrow594=33x-27x=6x\)
\(\Leftrightarrow x=\dfrac{594}{6}=99\left(km\right)\)
Vậy quãng đường AB có độ dài 99km