\(CMR:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\notinℕ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé
Ta có :
\(\frac{1}{1^2}< \frac{1}{1\cdot2};\frac{1}{2^2}< \frac{1}{2\cdot3};.....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(\Rightarrow a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow a< 1-\frac{1}{50}=\frac{49}{50}\)
\(a< \frac{49}{50}< 1< 2\)
\(\Rightarrow a< 2\)
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.
Cách 1 - Ta có :
\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)
Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)
\(\Leftrightarrowđpcm\)
Tổng trên có số số hạng là: \(\left(n-2\right):1+1=n-1\) số hạng
Suy ra \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\)
\(=\frac{\left(\frac{1}{n}+\frac{1}{2}\right)\left(n-1\right)}{2}=\frac{\frac{1}{n}\left(n-1\right)+\frac{1}{2}\left(n-1\right)}{2}\)
\(=\frac{1-\frac{1}{n}+\frac{n}{2}-\frac{1}{2}}{2}=\frac{\frac{1}{2}-\left(\frac{1}{n}-\frac{n}{2}\right)}{2}\)
\(=\frac{\left(\frac{1}{2}\right)}{2}-\frac{\left(\frac{2}{2n}\right)}{2}+\frac{\left(\frac{n^2}{2n}\right)}{2}=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}\)
Suy ra \(n\ne0\).Ta có: \(S=\frac{1}{4}-\frac{1}{2n}+\frac{n}{4}=\frac{1+n}{4}-\frac{1}{2n}\)
\(=\frac{2n^2+2n+4}{8n}=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{\left(\frac{7}{2}\right)}{8n}\)
\(=\frac{2\left(n+\frac{1}{2}\right)^2}{8n}+\frac{7}{16n}\)
Đến đây bí =)Alibaba!