K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

13 tháng 11 2021

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

26 tháng 10 2017

vì 39 chia hết cho 13 suy ra 39a chia hết cho 13

mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13

suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)

vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13

k cho mik nha

22 tháng 7 2015

2) Nếu a + 4b chia hết cho 13 => 10a + 40b chia hết cho 13 (1).

Lấy (1) - 39b (luôn chia hết cho 13) được 10a +b

=> 10a + b chia hết cho 13.

Ngược lại cũng tương tự.

25 tháng 12 2015

Giả sử: (3n+2;5n+3)=d
->(3n+2)chc d =>5(3n+2)chc d=>(15n+10)chc d
->(5n+3)chc d =>3(5n+3)chc d=>(15n+9)chc d
=>1 chc d 
=>d=1
   Vậy hai số đó nguyên tố cùng nhau

29 tháng 9 2015

Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13

=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13

=> 10a + b chia hết cho 13

=> đpcm

24 tháng 12 2017

Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)

A= 3a+ 12b+ 10a+ b.

A= 13a+ 13b\(⋮\) 13.

=> A\(⋮\) 13.

Vì 10a+ b\(⋮\) 13.

=> 3( a+ 4b)\(⋮\) 13.

Mà 3 không\(⋮\) 13.

=> a+ 4b\(⋮\) 13.

Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.

3 tháng 5 2020

Đặt A= a + 4b

      B= 10a + b

Ta có: 10A- B= 10(a +4b) - (10a +b)

                    = 10a + 40b - 10a - b

                    = (10a - 10a) + (40b - b)

                    =        0        +    39b

                    = 39b

                    = 13 . 3b chia hết cho 13

=> 10A - B chia hết cho 13

- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13

hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13

- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13

hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13

       Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.

   Chúc bạn học tốt!

11 tháng 8 2023

Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)

\(\Rightarrow b=13k-10a\)

\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)

\(=a+52k-40a\)

\(=52k-39a\)

\(=13\left(4k-3a\right)⋮13\)

Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)

11 tháng 8 2023

Do (10�+�)⋮13⇒10�+�=13�(�∈�)

⇒�=13�−10�

⇒�+4�=�+4.(13�−10�)

=�+52�−40�

=52�−39�

=13(4�−3�)⋮13

Vậy (10�+�)⋮13⇒(�+4�)⋮13