K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2015

n+4 chia hết cho n

=>4 chia hết cho n

=>n thuộc Ư(4)={1;2;4}

3n+7 chia hết cho n

=>7 chia hết cho n

=> thuộc Ư(7)={1;7}

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

30 tháng 11 2023

a) 7 ⋮ (n - 2)

⇒ n - 2 ∈ Ư(7) = {-7; -1; 1; 7}

⇒ n ∈ {-5; 1; 3; 9}

Mà n là số tự nhiên

⇒ n ∈ {1; 3; 9}

b) n + 2 = n - 4 + 6

Để (n + 2) ⋮ (n - 4) thì 6 ⋮ (n - 4)

⇒ n - 4 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}

⇒ n ∈ {-2; 1; 2; 3; 5; 6; 7; 10}

Mà n là số tự nhiên

⇒ n ∈ {1; 2; 3; 5; 6; 7; 10}

30 tháng 11 2023

a) 7⋮n-2

=> n-2ϵƯ(7)={-1;1;-7;7}

=> nϵ{1;3;-5;9}

Vậy n ϵ{1;3;-5;9}

b) n + 2 ⋮ n + 4

=> n + 4 - 2 ⋮ n + 4

mà n + 4 ⋮ n + 4

=> 2 ⋮ n + 4 rồi làm như trên nhé

23 tháng 11 2021

\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)

23 tháng 11 2021

a,( 1;5 )

b, ( 1; 2; 4)

c (1;3 )

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

15 tháng 10 2017

a) Vì n chia hết cho b => n+4 chia hết cho n

Khi n thuộc { 1;2;4}

b) Vì 3n chia hết cho 7=> 3n+7 chia hết cho 

Khi 7 chia hết cho n

=> n thuộc { 1;7}

26 tháng 10 2018

a)

Ta có:

n+4 chia hết cho n+1 =>n+1+3 chia hết cho n+1

Vì n+1 chia hết cho n+1=> 3 chia hết cho n+1

(từ đoạn này dễ rồi nha)

(tương tự với những câu còn lại)

13 tháng 1 2019

a,n=2

b,n=4

c,n=2