1) Cho đường tròn tâm O có đường kính AB = 2R. Gọi d là tiếp tuyến của đường tròn, A là tiếp điểm. Gọi M là điểm bất kì thuộc d. Qua O kẻ đường thẳng vuông góc với BM, cắt d tại N
a) Chứng minh rằng tích AM.AN không đổi khi điểm M chuyển động trên đường thẳng d.
b) Tìm giá trị nhỏ nhất của MN.
Bạn tự vẽ hình nhé.
a) Ta có góc N = góc B ( góc có cạnh tương ứng vuông góc)
=> tam giác ANO đồng dạng với ABM
=> AN/AB =AO/AM => AM.AN = AB.AO =2R2 = không đổi
b) MN= AM+AN \(\ge2\sqrt{AM.AN}=2\sqrt{2R^2}=2R\sqrt{2}\)
=> MN nhỏ nhất = 2R căn 2 khi AM =AN