Cho tam Giác ABC vuông tại B , bt AC=20cm, Ab= 12cm . Tính đọ dài cạnh BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại B
=>AB2+BC2=AC2 (theo định lí Pi-ta-go)
Hay 122+BC2=202
=>144+BC2=400
=>BC2=400-144
=>BC2=256
=>BC2=162
Vậy BC=16cm
a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)
\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\)
b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)
\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)
a, Vì ΔABC vuông tại A nên theo ĐL Pytago, ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100
⇒ BC = 10 (cm)
b, Vì ΔABC vuông tại A nên theo ĐL Pytago, ta có:
BC2 = AB2 + AC2
⇒ AC2 = BC2 - AB2 = 202 - 122 = 256
⇒ AC = 16 (cm)
diện tích ABC là : 12*20:2=120 diện tích ABN là : 15*12:2=90 diện tích NAC là :120-90=30 độ dài MA là :30*2:20= 3 độ dài BM là 12-3=9 diện tích BNM là 15*9:2=67,5
\(\Delta ABC\)vuông tại B
Áp dụng định lí Py-ta-go ta có :
\(\Rightarrow BC^2=AC^2+AB^2\)
\(\Rightarrow BC^2=20^2-12^2=256\)
\(\Rightarrow BC=\sqrt{256}=16\left(cm\right)\)
Bạn Phương làm sai ở câu đầu. BC đâu phải cạnh huyền?
Xét tam giác ABC vuông tại B có AC là cạnh huyền.Theo định lí Pytago,ta có:
\(AC^2=AB^2+BC^2\Rightarrow BC^2=AC^2-AB^2\)
\(=20^2-12^2=256\Rightarrow BC=\sqrt{256}=16\)