Cho a,b,c dương thỏa mãn abc=1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath
Áp dụng BĐT Cosi ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)
Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
Cộng theo từng vế BĐT trên ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)
Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)
Dấu bằng = xảy ra khi a = b = c = 1
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)
Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :
\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)
Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)
\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)
cosi \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\frac{1}{a^2}}{\frac{b+c}{bc}}\)
Biến đổi tương tự cho 2 BĐT còn lại ta có:
\(\frac{1}{b^3\left(a+c\right)}=\frac{\frac{1}{b^2}}{\frac{a+c}{ac}};\frac{1}{c^3\left(a+b\right)}=\frac{\frac{1}{c^2}}{\frac{a+b}{ab}}\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{2}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2}3\sqrt[3]{\left(abc\right)^2}=\frac{3}{2}\)
\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)
Chứng minh tương tự ta có: \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)
=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)
Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)
=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)
Ta có:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)
Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(
BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)
<=> \(ab+bc+ac+a+b+c\ge6\)(1)
(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)
=> BĐT được CM
Dấu bằng xảy ra khi \(a=b=c=1\)
Biến đổi tương đương ta có :
\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)
\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)
\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)
\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)
Sử dụng thêm bất đẳng thức Cauchy 3 số ta có :
a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)
Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1
Mình áp dụng BĐT AM-GM đến dòng
\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)
Áp dụng BĐT AM-GM cho 3 số dương ta được
\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)
Cộng từng vế BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh
Dấu "=" xảy ra <=> a=b=c=1
Biến đối tương đương ta có:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)
\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)
Sử dụng thêm BĐT Cauchy 3 số ta có:
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)
Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1
Mẫu bài này khó khử ~v
Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:
\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)
Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)
Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\)
\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)
\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)
Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)
(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)
Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)
Suy ra \(t^5+u^5+v^5\ge5-2=3\)
Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)
Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)
Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)
Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v
Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!