tim so tu nhien n de \(A=n^2+n\) là so nguyen to
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : n^2+4n = n.(n+4)
Để n.(n+4) là số nguyên tố ( số p ) => n=p ; n+4=1 hoặc n=1;n+4=p
=> p=3;n=-1 hoặc p=5;n=1
Mà n là số tự nhiên => n=1
Vậy n = 1
k mk nha
Để \(\left(n+3\right)\left(n+1\right)\in P\Rightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}}\)
Mà \(n+1< n+3\Rightarrow n+1=1\Rightarrow n=0\)
Vậy ...
n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n)(n2 +2 + 2n) = [(n -1)2 + 1].[(n + 1)2 +1]
Nếu n = 1 thì n4 + 4 = 1.5 = 5 là số nguyên tố
Nếu n>1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1]. và [(n + 1)2 +1] . Khi nó nó không phải là số nguyên tố.
ĐS: n = 1
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Vì 23n-2 là số nguyên tố => 23n-2 >1 mà 23n-2 là số chẵn => số nguyên tố chẵn duy nhất là 2
=>2 3n -2 là số nguyên tố => 3n -2 =1 => n =1
\(n=1\)
Ua ben do nghi Tet roi ha :>