K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBK va tamgiac MCH co : 

goc BKM = goc CHM = 90do MK | AB va MH | AC 
tamgiac ABC can tai A (gt)  => goc ABC = goc ACB (tc)

MB = MC do M la trung diem cua BC (gt)

=>  tamgiac MBK = tamgiac MCH (ch - gn)

30 tháng 1 2019

hmb và kcm cơ ma

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK

3 tháng 3 2017

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

mk ko biết xin lỗi bạn nha!!!

a: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{MBH}=\widehat{MCK}\)

Do đó: ΔBHM=ΔCKM

Suy ra: MH=MK

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

MH=MK

Do đó:ΔAHM=ΔAKM

Suy ra: AH=AK

hay A nằm trên đừog trung trực của HK(1)

ta có: MH=MK

nên M nằm trên đường trug trực của HK(2)

Từ (1)và (2) suy ra AM là đường trung trực của HK

d: Ta có: \(\widehat{DBC}+\widehat{ABC}=90^0\)

\(\widehat{DCB}+\widehat{ACB}=90^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBC}=\widehat{DCB}\)

=>ΔDBC cân tại D

=>DB=DC

hay D nằm trên đường trung trực của BC(3)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(5)

Từ (3), (4) và (5) suy ra A,M,D thẳng hàng

15 tháng 3 2017

K

Hình hơi xấu hì hì! tự viết GT KL nha!

Cm:

a) \(\Delta ABC\)cân tại A (gt)

=> AB=AC

=>AC=4cm (vì AB=4cm(gt))

Vậy AC=4cm.

b) \(\Delta ABC\)cân tại A (gt)

=>\(\widehat{B}=\widehat{C}\)

\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)

\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

=> \(\Delta ABC\)đều.

c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

AB=AC

BM=CM

=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)

                               (đpcm)

d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)

=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)

=>\(\widehat{AMB}=\widehat{AMC}=90^0\)

=> \(AM⊥BC\)(Đpcm)

e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:

\(\widehat{BHM}=\widehat{CKM}=90^0\)

BM=CM

\(\widehat{B}=\widehat{C}\)

=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)

=>MH=MK(2 cạnh t/ứ)

              (đpcm)

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)