Cho x , y , z > 0 thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
Tìm max P = xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét giả thiết : \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\Leftrightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)
\(\Leftrightarrow\frac{1}{1+x}\ge\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự : \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\) ; \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân các bđt trên theo vế : \(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\\\frac{1}{1+x}=\frac{1}{1+y}=\frac{1}{1+z}\end{cases}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Vậy max (xyz) = 1/8 <=> x = y = z = 1/2
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)
\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)
\(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)
\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)
Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)
Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z
P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý
Sửa đề : CMR : \(xyz\le\frac{1}{8}\)
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\Rightarrow\frac{1}{z+1}\ge\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{x}{x+1}+\frac{y}{y+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(1\right)\)(bđt AM - GM)
Tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(y+1\right)}}\left(2\right)\\\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\left(3\right)\end{cases}}\)
Nhân vế với vế của (1) ; (2) ; (3) laih ta được :
\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}\)(đpcm)
áp dụng bđt cosi ta có:
\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)
tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)
dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)
\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)
\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1
khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
vậy max A là 1 khi x=y=z=1
Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)
Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)
Dấu = xra khi a=b=c và abc=1 =>a=b=c=1
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Ta c/m BĐT mạnh hơn \(\frac{1}{x^5-x^2+3xy+6}+\frac{1}{y^5-y^2+3yz+6}+\frac{1}{z^5-z^2+3zx+6}\le\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(x^5+x+1\ge3x^2\)và \(2x^2+2\ge4x\)
\(\Rightarrow x^5-x^2+6\ge3x+3\)
\(\Rightarrow\frac{1}{x^5-x^2+3xy+6}\le\frac{1}{3(x+xy+1)}\)
\(P\le\frac{1}{3(x+xy+1)}+\frac{1}{3(y+yz+1)}+\frac{1}{3(z+zx+1)}=\frac{1}{3}\)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Từ \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
\(\Rightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)
\(=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
C/m tương tự cũng có \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)
\(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân 3 vế của các bất đẳng thức trên lại ta được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow1\ge8xyz\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "='' khi \(x=y=z=\frac{1}{2}\)
Vậy .......
Đây là môn toán mà!