K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

undefined

Y
6 tháng 2 2019

A B C O A' B' C' M N

+ Qua A vẽ đường thẳng song song với BC cắt BB' cà CC' lần lượt ở N,M

+ ΔAB'N có AN // BC

\(\Rightarrow\dfrac{CB'}{B'A}=\dfrac{CB}{AN}\)

+ Tương tự : \(\dfrac{AC'}{C'B}=\dfrac{AM}{BC}\)

+ ΔAOM có AM // BC

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AO}{OA'}\)

+ tương tự : \(\dfrac{AN}{BA'}=\dfrac{AO}{OA'}\)

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AN}{BA'}\Rightarrow\dfrac{AN}{AM}=\dfrac{BA'}{A'C}\)

Do đó : \(\dfrac{AC'}{C'B}\cdot\dfrac{BA'}{A'C}\cdot\dfrac{CB'}{B'A}=\dfrac{AM}{BC}\cdot\dfrac{AN}{AM}\cdot\dfrac{BC}{AN}=1\)

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

4 tháng 12 2021

1.

Gọi cạnh tam giác ABC là a

\(S_{ABC}=S_{AMB}+S_{BMC}+S_{AMC}\\ \Leftrightarrow\dfrac{1}{2}ah=\dfrac{1}{2}ax+\dfrac{1}{2}ay+\dfrac{1}{2}az\\ \Leftrightarrow x+y+z=h\)

Lại có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=h^2\left(bunhia\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{1}{3}h^2\)

Dấu \("="\Leftrightarrow x=y=z\Leftrightarrow M\) là giao 3 đường p/g của \(\Delta ABC\)