cho ba số a,b,c thỏa mãn 0<=a<=b+1<=c+2 và a+b+c=1
Tìm giá trị nhỏ nhất của c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)
- Nếu \(abc< 0\Rightarrow\) trong 3 số a; b; c có ít nhất 1 số âm
Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)
Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)
\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)
Vậy \(a=b=c=0\)
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
Làm vô đây đài nhưng làm trog giấy ngắn lắm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
Tk mk nha
Vì: \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right).\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\) (1)
\(\left(a-1\right).\left(c-1\right)\ge0\Leftrightarrow ac-a-c+1\ge0\Leftrightarrow ac+1\ge a+c\)
\(\Leftrightarrow\dfrac{1}{ac+1}\le\dfrac{1}{a+c}\Leftrightarrow\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\) (2)
\(\left(b-1\right).\left(c-1\right)\ge0\Leftrightarrow bc-b-c+1\ge0\Leftrightarrow bc+1\ge b+c\)
\(\Leftrightarrow\dfrac{1}{bc+1}\le\dfrac{1}{b+c}\Leftrightarrow\dfrac{a}{bc+1}\le\dfrac{a}{b+c}\) (3)
Cộng vế với vế của (1)(2) và (3) ta được:
\(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ac+1}\le2\left(đpcm\right)\)
lam giong nhu khuyen hoang nhung me bao lo
(a+2)2 = 0,2
(b-3)4= 2
(5-c)6=0
đề là J bạn ghi rõ vào tớ ko thấy :(((
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1