Cho a, b, c là 3 cạnh của tam giác. CMR: \(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c là 3 cạnh của tam giác
CMR:\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)
\(\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
Bài toán cần chứng minh:
\(\frac{\left(x+y\right)\left(z+x\right)}{4x}+\frac{\left(x+y\right)\left(y+z\right)}{4y}+\frac{\left(y+z\right)\left(z+x\right)}{4z}\ge x+y+z\)
Ta có:
\(VT=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\)
\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x+y+z\right)xyz\)
\(=x+y+z=VP\)
Xin lỗi bạn , mik giải muộn
Do a ; b ; c là 3 cạnh của tam giác \(\Rightarrow a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(a+b-c=x;b+c-a=y;a+c-b=z\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=a+b+c\\x+y=2b;y+z=2c;z+x=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=a+b+c\\b=\dfrac{x+y}{2};c=\dfrac{y+z}{2};a=\dfrac{x+z}{2}\end{matrix}\right.\)
Đặt PT đã cho là A . Ta có :
\(A=\dfrac{\left(x+y\right)\left(x+z\right)}{4x}+\dfrac{\left(x+y\right)\left(y+z\right)}{4y}+\dfrac{\left(y+z\right)\left(x+z\right)}{4z}\)
\(=\dfrac{x^2+xy+xz+yz}{4x}+\dfrac{xy+y^2+xz+yz}{4y}+\dfrac{xy+xz+yz+z^2}{4z}\)
\(=\dfrac{x+y+z}{4}+\dfrac{yz}{4x}+\dfrac{x+y+z}{4}+\dfrac{xz}{4y}+\dfrac{x+y+z}{4}+\dfrac{xy}{4z}\)
\(=\dfrac{3}{4}\left(x+y+z\right)+\dfrac{yz}{4x}+\dfrac{xz}{4y}+\dfrac{xy}{4z}\)
\(=3\left(x+y+z\right)+\dfrac{y^2z^2+x^2z^2+x^2y^2}{4xyz}\)
Áp dụng BĐT phụ \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)
\(\Rightarrow A\ge\dfrac{3}{4}\left(x+y+z\right)+\dfrac{x+y+z}{4}=x+y+z=a+b+c\)
\(\Rightarrowđpcm\)
Đặt a+b-c=x
b+c-a=y
c+a-b=z
\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)
Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0
\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)
\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)
\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)
\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\) (Do x;y;z>0)
\(\Rightarrow A\ge a+b+c\)
Đặt a+b-c=x
-a+b+c=y
a-b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Đặt a+b‐c=x
‐a+b+c=y
a‐b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Ta có a, b , c là 3 cạnh của 1 tam giác
=> Đặt: z = a + b - c > 0 ; x = b + c - a> 0 ; y = a + c - b>0
khi đó: x + y + z = a + b + c
và \(a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Để chứng minh: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)(1)
Ta cần chứng minh:
\(\frac{\left(y+z\right)\left(x+z\right)}{4z}+\frac{\left(x+z\right)\left(z+y\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}\ge x+y+z\)
<=> \(\frac{xy+xz+zy+x^2}{z}+\frac{yz+x^2+yx+xz}{x}+\frac{xz+xy+y^2+yz}{y}\ge4\left(x+y+z\right)\)
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)(2)
Ta có: \(\frac{\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2}{3}\ge\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\)
\(=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) với mọi x; y ; z
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\) với mọi x; y ; z dương
Vậy (2) đúng do đó (1) đúng,
Nguyễn Linh Chi hỏi nhé : nếu x + y + z thì phải = 2 ( a + b + c ) chứ
hmm..
Đặt \(\left(x;y;z\right)=\left(a+b-c;b+c-a;c+a-b\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\ge x+y+z\)
Ta có:\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\)
\(=\frac{x^2+xy+xz+yz}{4x}+\frac{xy+yz+y^2+zx}{4y}+\frac{zx+zy+z^2+xy}{4z}\)
\(=\frac{3\left(x+y+z\right)}{4}+\frac{1}{4}\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}+\frac{x^2y^2}{xyz}\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{\left(xy+yz+zx\right)^2}{3xyz}\right]\)\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{3xyz\left(x+y+z\right)}{3xyz}\right]\)
\(=x+y+z\)
Bất đẳng thức đã được chứng minh.
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)