Cho S=\(\dfrac{1}{5^2}+\dfrac{1}{9^2}+.......+\dfrac{1}{409^2}\)
CMR S<\(\dfrac{1}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{3.7}\)
\(\frac{1}{9^2}=\frac{1}{9.9}< \frac{1}{7.11}\)
.......
\(\frac{1}{409^2}=\frac{1}{409.409}=\frac{1}{(407+2)(411-2)}=\frac{1}{407.411-2.407+2.411}< \frac{1}{407.411}\)
Cộng theo vế ta có:
\(S<\frac{1}{3.7}+\frac{1}{7.11}+....+\frac{1}{407.411}(*)\)
Mà:
\(\frac{1}{3.7}+\frac{1}{7.11}+....+\frac{1}{407.411}=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{407.411}\right)\)
\(=\frac{1}{4}\left(\frac{7-3}{3.7}+\frac{11-7}{7.11}+....+\frac{411-407}{407.411}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{407}-\frac{1}{411}\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{411}\right)< \frac{1}{4}.\frac{1}{3}=\frac{1}{12}(**)\)
Từ \((*); (**)\Rightarrow S< \frac{1}{12}\)
Ta có đpcm.
\(S>\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{9.10}\)
\(S>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\) (1)
\(S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{8.9}\)
\(S< 1-\dfrac{1}{9}=\dfrac{8}{9}\) (2)
(1) và (2) => đpcm
Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)
Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)
Từ (1) và (2) suy ra đpcm.
Lời giải:
$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$
\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)
\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)
Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy
\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$
Mặt khác:
\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(M< 1+1-\frac{1}{n}< 2\)
Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)
1, Ta có \(\dfrac{\dfrac{1}{3}}{1}=\dfrac{1}{3};\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3};...\)
-> Là cấp số nhân, q = 1/3
Ta có \(S_9=1.\dfrac{1-\left(\dfrac{1}{3}\right)^9}{1-\left(\dfrac{1}{3}\right)}\approx1,5\)
b, Ta có \(\dfrac{\dfrac{1}{5}}{1}=\dfrac{1}{5};\dfrac{\dfrac{1}{25}}{\dfrac{1}{5}}=\dfrac{1}{5};...\)
-> Là cấp số nhân, q = 1/5
\(S_7=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}\approx1,25\)
1: \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{3^9}\)
\(=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^9\)
u1=1; q=1/3
\(S_9=\dfrac{u1\cdot\left(1-q^9\right)}{1-q}=\dfrac{1\left(1-\left(\dfrac{1}{3}\right)^9\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3^9}\right)\)
2:
\(S=\left(\dfrac{1}{5}\right)^0+\left(\dfrac{1}{5}\right)^1+...+\left(\dfrac{1}{5}\right)^7\)
\(u1=1;q=\dfrac{1}{5}\)
\(S_7=\dfrac{1\cdot\left(1-q^7\right)}{1-q}=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}=\dfrac{5}{4}\left(1-\dfrac{1}{5^7}\right)\)