Cho các số thực dương a,b,c. CMR
\(\sqrt{\frac{1+a^2}{b+c}}+\sqrt{\frac{1+b^2}{a+c}}+\sqrt{\frac{1+c^2}{a+b}}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu này t dùng vi-et giải được. Nhưng để mai đi. Giờ giải bằng điện thoại thì khó quá
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Ta sẽ chứng minh: \(\sqrt{\frac{x^4+1}{2}}+\frac{4x^2}{x^2+1}\ge3x\)
Thật vậy: \(\Leftrightarrow\left(\sqrt{\frac{x^4+1}{2}}-x\right)+2\left(\frac{2x^2}{x^2+1}-x\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}+2x}-\frac{2x}{x^2+1}\right]\ge0\)
Bây giờ ta quy về chứng minh: \(\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}}\ge\frac{2x}{x^2+1}\Leftrightarrow\left(x^2+1\right)\left(x+1\right)^2\ge4x\left(\sqrt{\frac{x^4+1}{2}+x}\right)\)
\(\Leftrightarrow x^4+1+2x^3+2x\ge2x^2+4x\sqrt{\frac{x^4+1}{2}}\)
\(\Leftrightarrow\frac{x^4+1}{2}+x^3+x\ge x^2+2x\sqrt{\frac{x^4+1}{2}}\)
Bất đẳng thức trên đúng theo AM - GM:
\(\frac{x^4+1}{2}+x^3+x\ge\left(\frac{x^4+1}{2}+x^2\right)+x^2\ge2x\sqrt{\frac{x^4+1}{2}}+x^2\)
Vậy hoàn tất chứng minh trên nên ta có:
\(\sqrt{\frac{a^2+1}{2}}+\frac{4a}{a+1}\ge3\sqrt{a}\);\(\sqrt{\frac{b^2+1}{2}}+\frac{4b}{b+1}\ge3\sqrt{b}\)
\(\sqrt{\frac{c^2+1}{2}}+\frac{4c}{c+1}\ge3\sqrt{c}\); \(\sqrt{\frac{d^2+1}{2}}+\frac{4c}{d+1}\ge3\sqrt{d}\)
Cộng từng vế của các bđt trên. ta được: \(\text{Σ}_{cyc}\sqrt{\frac{a^2+1}{2}}\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\)
\(-4\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\right)\)\(=3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)-8\)
Dấu "=" xảy ra khi a = b = c = 1
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)
\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)
Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)
Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.
Ta có BĐT sau: \(\sqrt{\frac{1+a^2}{b+c}}\ge\frac{a+1}{\sqrt{2\left(b+c\right)}}\)(*)
Thật vậy, với a,b,c dương, ta có: (*)\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\left(a+1\right)^2}{2\left(b+c\right)}\)
\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\frac{\left(a+1\right)^2}{2}}{b+c}\Leftrightarrow1+a^2\ge\frac{a^2}{2}+a+\frac{1}{2}\)
\(\Leftrightarrow\frac{\left(a-1\right)^2}{2}\ge0\)(đúng với mọi \(a\inℝ\))
Tương tự, ta có: \(\sqrt{\frac{1+b^2}{c+a}}\ge\frac{b+1}{\sqrt{2\left(c+a\right)}}\)(2); \(\sqrt{\frac{1+c^2}{a+b}}\ge\frac{c+1}{\sqrt{2\left(a+b\right)}}\)(3)
Cộng theo vế của các BĐT (*), (2), (3), ta được:
\(\Sigma\sqrt{\frac{1+a^2}{b+c}}\ge\Sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge\Sigma\frac{a+1}{\frac{\left(b+c\right)+2}{2}}=\Sigma\frac{2\left(a+1\right)}{b+c+2}\)
\(=\Sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)(Theo BĐT Bunhiacopxki dạng phân thức)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)
\(\ge\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c+3\right)}{a+b+c+3}=3\)
Đẳng thức xảy ra khi a = b = c = 1