Tìm ba số tự nhiên, biết rằng BCNN của chúng bằng 360, số thứ nhất và số thứ hai tỉ lệ nghịch với 3 và 2, số thứ hai và số thứ ba tỉ lệ thuận với 2 và 3.
giải cho mk bài nay vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là a ;b ;c
theo bài ta có:
\(3a=2b;\frac{b}{2}=\frac{c}{3}\)
\(9a=6b=4c\) (1)
Vì BCNN( a;b;c) =360 => 360 =a.k=b.m=c.n với ( k;m;n) =1 (2)
Từ (1) (2)
=> 360 = 9a=6b=4c có ( 9;6;4) =1
=> a =360:9 =40
=> b =360:6 =60
=> c =360:4 =90
Vậy 3 số cần tìm là : 40;60 ;90
Gọi 3 số đó là a, b, c (a, b, c∈N*)
Do BCNN(a, b, c)=360
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{360}{x}\\b=\frac{360}{y}\\c=\frac{360}{z}\end{matrix}\right.\)(x,y,z∈N*)
Lại có:
\(3a=2b\Leftrightarrow\frac{360}{x}.3=\frac{360}{y}.2\Leftrightarrow\frac{1080}{x}=\frac{720}{y}\Leftrightarrow\frac{x}{1080}=\frac{y}{720}\)(1)
\(\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{360}{2y}=\frac{360}{3z}\Leftrightarrow\frac{180}{y}=\frac{120}{z}\Leftrightarrow\frac{y}{180}=\frac{z}{120}\Leftrightarrow\frac{1}{4}.\frac{y}{180}=\frac{1}{4}.\frac{z}{120}\Leftrightarrow\frac{y}{720}=\frac{z}{480}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{x}{1080}=\frac{y}{720}=\frac{z}{480}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=1080k\\y=720k\\z=480k\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{360}{x}=\frac{1}{3}k\\b=\frac{360}{y}=\frac{1}{2}k\\c=\frac{360}{z}=\frac{3}{4}k\end{matrix}\right.\)
\(\Rightarrow BCNN\left(a,b,c\right)=BCNN\left(\frac{1}{3}k;\frac{1}{2}k;\frac{3}{4}k\right)=360\Rightarrow3k=360\Rightarrow k=120\)\(\Rightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=90\end{matrix}\right.\)
Gọi ba số cần tìm lần lượt là a,b,c.
Theo đề bài ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{3}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{3}=k\)
\(\Rightarrow a=3k;b=4k;c=3k\)
BCNN(a,b,c)=3.4.k=720
suy ra k=60
vậy ba số cần tìm là 180,240,180