Giải hệ pt : \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)
Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)
\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)
* Với x + y = 2xy.
Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)
+) Với xy = 0 suy ra x +y = 0 => x =y = 0
+) Với xy = 1 => x +y = 2xy = 2
Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:
\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)
* Với x +y + 3xy + 1 = 0.
\(\Rightarrow x+y=-\left(3xy+1\right)\)
Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)
\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)
Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.
=> (x;y) = {(0;0) , (1;1)}
P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!
c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)
Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)
Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)
Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)
Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).
Anh thử giải nốt xem sao?Em ko chắc đâu nhá!
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
đặt a=x(x+1);b=y(y+1)
\(\Leftrightarrow\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)
bài này dễ mà bạn
có\(\hept{\begin{cases}x+y+x^2+y^2=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
suy ra \(\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
sau đó bạn Đặt a=x(x+1); b=y(y+1)
phương trình trở thành\(\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)
dễ dàng giải dc a=6 ; b=2 nha
ra a va b rồi bạn tự tìm x và y nha
nhớ k đúng nha
\(a,\hept{\begin{cases}5\left(x+2y\right)-3\left(x-y\right)=99\\x-3y=7x-4y-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+10y-3x+3y=99\\x-3y-7x+4y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+13y=99\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y=198\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y-6x+y=198-17\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}40y=181\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{181}{40}\\x=\frac{287}{80}\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(\frac{287}{80};\frac{181}{40}\right)\)
Ý b, cũng làm tương tự bạn nhé ! Phá ngoặc ra rồi chuyển vế thành hpt bậc nhất 2 ẩn
\(b,\hept{\begin{cases}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-2\\-3y-x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}\)
dễ mà hehe:
x^2+y^2+xy+1=4y:
=> x^2+1=4y-y^2-xy
=> x^2+1=y(4-y-x)
=> thay gt x^2+1 vào cái pt (2)
=> y(4-y-x)(x+y-2)=y
=> -y(x+y-4)(x+y-2)=y
=> (x+y-4)(x+y-2)=-1
Đặt x+y-3=t
=> x+y-4=t-1 và x+y-2=t+1
=> t^2-1=-1
=> t^2=0
=> t=0
=> x+y-3=0
=> x+y=3
=> x=y-3
Giai pt (1):
(x+y)^2-2xy+xy+1=4y
=> 10-xy=4y
=> 10-(3-y)y-4y=0
=> 10-3y+y^2-4y=0
=> y^2-7y+10=0
=> 4y^2-28y+40=0
=> (2y-7)^2=9
=> 2y-7=3 hoặc -3
Tự tìm y và tìm nốt x qua x+y=3 nhá
Giúp đến thế thôi !!!
\(\hept{\begin{cases}x^2+1+y\left(x+y\right)=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y=0 hệ phương trình trở thành \(\hept{\begin{cases}x^2+1=0\\\left(x^2+1\right)\left(x-2\right)=0\end{cases}}\)(vô nghiệm)
Với y\(\ne\)0 hệ trở thành \(\hept{\begin{cases}\frac{x^2+1}{y}+\left(x+y\right)=4\\\left(\frac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)
Đặt a=\(\frac{x^2+1}{y},b=x+y\)thay vào hệ (1) ta được \(\hept{\begin{cases}a+b=4\\a\left(b-2\right)=1\end{cases}}\)
Giải ta được a=1; b=3
Với a=1; b=3 => \(\hept{\begin{cases}\frac{x^2+1}{y}=1\\x+y=3\end{cases}}\)
Giải được nghiệm của hệ (x;y)=(1;2) và (c;y)=(-2;5)
KL: