K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

TRong cùng 1 giờ thì chảy được 1/2+1/3=5/6(bể)

18 tháng 3 2022

Trong một giờ vòi một chảy được: 
 1 : 2 = \(\dfrac{1}{2}\) (bể)
Trong một giờ vòi hai chảy được:
 1 : 3 = \(\dfrac{1}{3}\) (bể)
Trong một giờ cả hai vòi chảy được:
 \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) = \(\dfrac{5}{6}\) (bể)
           Đáp số : \(\dfrac{5}{6}\) bể

18 tháng 3 2022

Cảm ơn

10 tháng 4 2017

- 1 giờ vòi thứ nhất chảy được 1 2  bể.

- 1 giờ vòi thứ nhất chảy được 1 3  bể.

1 giờ cả hai vòi chảy được là:

1 2 + 1 3 = 5 6 ( b ê )

Đáp số: 5 6  bể

8 tháng 1

Trong một giờ vòi một chảy được:

    1 : 2  = \(\dfrac{1}{2}\) (bể)

Trong một giờ vòi hai chảy được:

   1 : 3 = \(\dfrac{1}{3}\) (bể)

Trong một giờ cả hai vòi cùng chảy được:

         \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) = \(\dfrac{5}{6}\) (bể)

Nếu cả hai vòi cùng chảy thì đầy bể sau:

        1 : \(\dfrac{5}{6}\) = \(\dfrac{6}{5}\) (giờ)

\(\dfrac{6}{5}\) giờ = 1 giờ 12 phút 

Đáp số:...

 

         

 

 

 

 

13 tháng 9 2017

Vòi thứ nhất chảy trong một giờ được  1 2 bể.

Vòi thứ hai chảy trong một giờ được 1 3 bể.

Cả hai vòi chảy trong một giờ được : 1 2 + 1 3 = 1 6 (bể )

Cả hai vòi sẽ chảy đầy bể trong  :  1 ÷ 1 6 = 6 5 ( giờ )

9 tháng 9 2021

Bài giải

1 giờ vòi thứ nhất chảy được số phần của bể là :

 1 : 2 = 1/2 ( bể )

1 giờ vòi thứ 2 chảy được số phần của bể là :

1 : 3 = 1/3 ( bể )

1 giờ cả 2 vòi chảy được số  phần của bể là :

1/2 + 1/3 = 5/6 ( bể )

số thời gian để 2 vòi chảy hết bể là :

60 : 5/6 = 72 ( phút )

Đổi 72 phút = 1,2 giờ

              Đáp số : 1,2 giờ.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

Trong 1 giờ vòi thứ nhất chảy được: $\frac{1}{2}$ (bể)

Trong 1 giờ vòi thứ hai chảy được: $\frac{1}{3}$ (bể)

Trong 1 giờ cả 2 vòi cùng chảy được: $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ (bể) 

Để đầy bể thì hai vòi cùng chảy hết số giờ là:

$1:\frac{5}{6}=\frac{6}{5}=1,2$ (giờ)

Bạn kham khảo link này nhé.

Câu hỏi của huyen nguyen - Toán lớp 4 - Học toán với OnlineMath

2 tháng 3 2019

Vòi thứ 1 chảy 1 giờ thì hết số phần bể là.

  1 : 5/2 = 2/5 (bể)

Vòi thứ 2 chảy 1 giờ thì hết số phần bể là.

  1 : 7/2 = 2/7 ( bể)

Cả hai vòi trang 1 giờ thì chảy hết số phần bể là .

2/5 + 2/7 = 24/35 (bể)

Hết số giờ thì chảy đầy bể là:

1 : 24/35 = 35/24 (giờ )

Đ/s.............